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Abstract

The 2003 Nobel Prize in Physics was awarded to Alexei Abrikosov and Vitaly 

Ginzburg, for their theories related to superconductivity, and to Anthony Leggett for his 

theory related to superfluidity. Superconductors and superfluids have become very 

important over the years due to their many theoretical and experimental applications. 

Superconductivity was discovered by Kamerlingh Onnes in 1911, while superfluidity in 

4He was discovered in 1938 by Pyotr Kapitsa, and independently by J.F. Allen and A.D. 

Misener. Superfluidity in 3He was not discovered until 1972 by David Lee, Douglas 

Osheroff and Robert Richardson. Abrikosov’s theory of Type-II superconductors is the 

basis of the current “hot” research area of high-temperature superconductors while 

Leggett’s theory of superfluid phase transitions has wide applications to many fields, 

including particle physics, cosmology, and liquid crystal physics. A brief history will be 

presented as well as an introduction to technical terms used in the theories. Afterwards, a 

descriptive analysis of the Ginzburg-Landau theory as well as the theory of type-II 

superconductors, and anisotropic superfluidity will be developed.
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1. INTRODUCTION1

In October 2003, the Nobel Prize was awarded to three individuals “for 

pioneering contributions to the theory of superconductors and superfluids”. 2  These 

individuals are: Alexei Abrikosov, Vitaly Ginzburg, and Anthony Leggett. Abrikosov 

was able to describe the phenomenon of type-II superconductors; Vitaly Ginzburg and 

Lev Landau formulated a theory on type-I superconductors, which served as a starting 

point for Abrikosov’s work; Anthony Leggett came up with the theory that describes the 

ordering and interaction of the atoms in a superfluid state. The purpose of this paper is to 

describe, at an introductory level, the main contributions from the 2003 Nobel laureates.

Ever since superconductors were discovered, they have become more important 

as they have found applications in science. Some examples of their applications include 

the use of superconducting magnets for: the magnetic resonance imaging (MRI) 

technique, which has been used in medicine for patient diagnostics, and the nuclear 

magnetic resonance (NMR) technique, which is often used to illuminate the structure of 

complex molecules. Superconducting magnets are also used in particle accelerators such 

as the Large Hadron Collider (LHC), which is currently under construction at CERN, in 

order for the large magnetic fields produced by such superconductors to bend the paths of 

charged particles that travel around the circumference of the accelerator. In order to fully 

appreciate the important components behind these techniques we must trace their 

beginnings, so a brief non-chronological historical excursion is now in order.

1 Adapted from the article by The Royal Swedish Academy of Sciences – The Information Department: 
Superfluids and superconductors: quantum mechanics on a macroscopic scale, 
http://www.nobel.se/physics/laureates/2003/phyadv03.pdf, posted on 7 October 2003, accessed on 14 
October 2003.
2 This was the official announcement made by the Royal Swedish Academy of Sciences.
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Superconductivity was originally discovered by Kamerlingh Onnes in 1911 when 

he noticed that the resistivity of mercury at liquid helium temperatures disappeared 

completely. Superfluidity was discovered later in 1938 by Pyotr Kapitsa, who used 4He, 

and independently by A.D. Misener and J.F. Allen. Superfluidity in 4He is a partial 

manifestation of Bose-Einstein condensation, which is a phenomenon where the wave 

functions of individual bosonic atoms start to coalesce as the temperature of the sample is 

decreased and eventually become one macroscopic wave function at a certain critical 

temperature. 4He atoms can obey Bose-Einstein statistics because they have an even 

number of nucleons and electrons and the net spin of each atom is zero making these 

atoms behave like bosons. These atoms then do not have to worry about the Pauli 

Exclusion Principle since it only prevents fermions from occupying the same state. 4He 

atoms can then settle down into the same, lowest energy, state. On the other hand, 

superconductivity involves electrons, which are fermions, so it was harder to come up 

with an explanation of how this phenomenon is possible. In 1957, John Bardeen, Leon 

Cooper, and Robert Schrieffer were able to come up with an explanation for 

superconductivity. This explanation is now called the BCS theory and it describes 

superconductivity as being carried out by particles, which are now called Cooper pairs, 

formed by pairs of electrons. Besides explaining superconductivity, the BCS theory is 

also able to explain the properties of isotropic charged superfluids3, but cannot explain 

the properties of anisotropic superfluids like 3He, which we will talk about shortly, or 

high temperature superconductors and heavy fermion superfluids. Electrons form pairs in 

order to form entities that have an integer spin and therefore behave like bosons. A 

3 Superfluids are the non-solid counterparts of superconductors. Their viscosity disappears below a certain 
critical temperature. 
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collection of Cooper pairs can then undergo Bose-Einstein condensation as the 

temperature is dropped. Cooper pairs can also be thought of as being structureless and 

isotropic in the sense that these electrons are in a spin-singlet state and they orbit each 

other in an s-wave state4.

David Lee, Douglas Osheroff, and Robert Richardson discovered superfluidity in 

1972 using 3He atoms. This is a much more complicated phenomenon than 4He 

superfluidity since 3He atoms have an odd number of nucleons and the net spin of these 

atoms is such that they behave like fermions, but as in the case of superconductivity, 

Helium-3 superfluidity is caused by the formation of Cooper pairs of fermions, which in 

this case are Helium-3 atoms. Unlike superconducting Cooper pairs, 3He Cooper pairs 

have a net non-zero orbital angular momentum and this is the reason why they are 

characterized as having internal degrees of freedom. They are also characterized as

anisotropic particles in a spin triplet state, with the Cooper pair constituents orbiting each 

other in a p-state.  

There are a couple of important concepts that will be relevant throughout the rest 

of our discussion of superconductors and superfluids: the order parameter and the 

spontaneously broken symmetry. The former was originally introduced by the Russian 

physicist Lev Landau in his theory of second order phase transitions. The order parameter 

is a quantity that is zero above a critical temperature Tc and nonzero below this 

temperature. More specifically, it is a complex number Ψ that has two components: an 

amplitude |Ψ| and a phase or gauge φ. The amplitude is a measurement of the density of 

Cooper pair particles and its value is given by their probability amplitude. The phase

4 Cooper pairs in “s- and p-wave states” just means that their orbits have the same form as s- and p-orbitals. 
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helps us determine whether a system of particles can be characterized as having broken 

gauge symmetry5. When a system is above a certain critical temperature, it is said to be 

rotationally invariant in both spin and orbital space under a certain gauge transformation 

φ→φ′. When the temperature of the system drops below the critical temperature, the 

system opts for a particular value of the gauge. This is known as broken gauge symmetry 

and it is what happens with certain materials when they become superfluids or 

superconductors below a certain critical temperature. The concept of the order parameter 

could be better understood through an example. In the theory of ferromagnetism, we can 

choose the order parameter to be the spontaneous magnetization of a sample. It would 

have a value of zero in its paramagnetic state, which is characterized by the random 

direction of the spins of the individual atoms of the sample, and it would have a nonzero 

value in the magnetically ordered ferromagnetic state, which is characterized by a 

preference in the spin direction of the individual atoms. The symmetry of the ferromagnet 

is then said to be broken under spin rotation.

The British physicist Anthony Leggett was awarded the Nobel prize for making

the theoretical discovery regarding the possibility of spontaneously broken symmetries in 

anisotropic superfluids such as 3He. The reason that this is possible is that anisotropic 

superfluids have a much more complicated form of their order parameter than that of 

isotropic superfluids. The order parameter of anisotropic superfluids has at least 18 

components.6 The reason for this complication is the fact that the Cooper pairs have a 

5  It is important to note the difference between spontaneously broken symmetry and broken gauge 
symmetry. The former refers to a symmetry in both spin and orbital angular momenta in a system of 
particles while the latter refers to a symmetry in the phase of particles.
6 The 3He atoms have three substates for the spin (Sz=0, ±1) as well as for the relative orbital angular 
momentum (lz=0, ±1). The wave function Ψ that describes a 3He Cooper pair therefore has a total of 3×3=9 
components, where each component represents a particular spin and orbital angular momentum 
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nonzero orbital angular momentum and that they are in a spin triplet state. These factors 

lead to the possibility of broken rotational symmetry in spin space and broken orbital 

rotation symmetry in orbital space for anisotropic superfluids.

There can be a combination of broken symmetries in both orbital and spin space

(Fig. 1). Leggett called this phenomenon spontaneously broken spin-orbit symmetry or 

simultaneously broken continuous symmetries. This phenomenon leads to superfluid 

properties or phases that have long range order that would not be understood if we were 

to combine the properties of materials that have individual broken symmetries. In other 

words, if we were to mix the sets of arrows from Fig. 1b and Fig. 1c, we would not get 

the state in Fig. 1d. Leggett was also able to show that the phenomenon of spontaneously 

broken spin-orbit symmetry leads to properties in the A-phase of superfluid 3He that are 

exactly the same as a state that was already known, called the ABM state. This is also the 

case with the B-phase of superfluid 3He and the BW state. The ABM state and the A-

phase and the BW state and the B-phase are thus synonymous to each other.7

configuration. Each of the substates would have a related complex-valued amplitude ψ. D. Vollhardt and P. 
Wölfle, The Superfluid Phases of Helium 3, (Taylor and Francis, London, 1990), p. 9.
7 All of the superfluid 3He phases will be discussed in more detail in Sec. 4.
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In order to understand superconductivity, we first need to review some general 

characteristics of pure and impure metals. We can think of the atoms in a metal as being 

distributed in a perfect and periodic lattice and the conduction electrons as traveling plane 

waves within the atomic lattice. The conduction electrons, being plane waves, have the 

characteristic that they can travel through the metal unimpeded by the atomic lattice if the 

lattice is perfectly periodic. Any fault in the periodicity of the lattice will cause the 

conduction electrons to be scattered. This scattering is what leads to electrical resistance. 

There are two factors that will spoil the perfect periodicity of any metal: the thermal 

vibrations of the constituent atoms, which will be present above absolute zero and are 
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more pronounced as the temperature of the metal is increased, and any impurities or 

foreign atoms and defects present in the sample. 8 If we imagine passing some current 

through a metal and we measure its resistance as we change its temperature, we would 

notice that, for a pure sample, its resistance would decrease as we decrease its 

temperature and it would eventually go down to zero at absolute zero. For an impure 

metal, like most metals in the real world, the conduction electrons would undergo 

impurity scattering besides the scattering caused by the thermal vibrations of the atoms. 

This impurity scattering is more or less independent of temperature and will be present 

even at the lowest temperatures. This is why, as the temperature of an impure metal is 

decreased, the resistance will decrease like it did with a pure metal, but there will be 

some residual resistance even at absolute zero (Fig. 2).

8 A.C. Rose-Innes and E.H. Rhoderick, Introduction to Superconductivity, (Pergamon Press, London, 1969), 
p. 4.
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If the metallic sample we were considering earlier were a superconductor, we 

would notice a very different behavior in its resistance as its temperature is lowered. The 

metal’s resistance will decrease in the same way as for the pure and impure metals that 

were mentioned earlier, but when the temperature reaches a certain critical value Tc, the 

metal’s resistance would suddenly vanish and it would remain that way down to absolute 

zero (Fig. 3). The phenomenon of superconductivity arises from the formation of Cooper 

pairs, which have condensed to their ground state and move coherently across the metal. 9

Diamagnetism is a property of superconductors, so they will expel any external 

magnetic field that is applied to them besides exhibiting zero resistance. The diamagnetic 

phenomenon is also known as the Meissner effect.

There are two types of the Meissner effect: the complete and partial Meissner 

effect. The former occurs when the transition from the superconducting state to the 

9 Cooper pair formation is due to electron-phonon interactions. A conduction electron interacts with the 
atomic lattice of the metal and produces a phonon, which is a quantized vibrational motion of the atomic 
lattice. This phonon then interacts with another electron and this interaction turns out to be an attractive one 
if the difference in the energy of an electron before and after the interaction is less than hν, where h is 
Planck’s constant and ν is the frequency of the phonon. If the attractive force due to this interaction is 
greater than the Coulomb repulsion between the electrons then these will form a Cooper pair. (A.C. Rose-
Innes and E.H. Rhoderick (op cit, pp. 118-120))
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normal state is discontinuous at a certain critical value of the external magnetic field (Hc). 

In this case, an applied magnetic field will be expelled from the superconductor at all 

values of the external magnetic field below the critical value. This is a property of type-I 

superconductors. 10 On the other hand, the partial Meissner effect occurs when there is a 

gradual transition from the superconducting state to the normal state. In this case, an 

external magnetic field will only be expelled from the superconductor below the lower 

critical magnetic field value Hc1, which is designated as the “Meissner phase” in Fig. 4. 

Above the lower critical magnetic field value and below the upper critical magnetic field 

value Hc2, the superconductor is said to be in the mixed state, or “Shubnikov phase” in 

Fig. 4, where the external magnetic field penetrates into the superconductor. This is a 

property of type-II superconductors.

10 The property that gives rise to type-I and type-II superconductivity will be explained in section 3.1 “The 
concept of the surface energy”.
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The next Nobel laureate, the Russian physicist Alexei Abrikosov, published a 

paper on type-II superconductors in 1957. In this paper, he described the mixed state as a 

phenomenon characterized by magnetic field vortices that can be mathematically 

described in terms of the order parameter Ψ, the square of which describes the density of 

superconducting electrons in the material. These vortices only exist between the lower 

and upper critical magnetic fields Hc1 and Hc2. They tend to repel each other and settle 

into certain specific patterns, which include square, triangular, and hexagonal shapes. As 

the magnitude of the external magnetic field is increased, the vortices move closer to 

each other until, at the upper critical magnetic field value, they overlap and the order 

parameter is suppressed. 

Two concepts that are very important in helping us understand the nature of the 

differences between type-I and type-II superconductors are the penetration depth11 λ and 

the coherence length ξ. As was stated earlier, superconductors tend to expel external 

magnetic fields, but these fields are not blocked out completely at the surface of the 

superconductor. The external magnetic field is able to penetrate a distance about equal to 

the penetration depth into the superconductor. At the surface of the superconductor, the 

number of superconducting electrons increases and reaches a constant value over a 

distance about equal to the coherence length into the superconducting material (Fig. 5).

11 As shown by the London theory, which will soon be developed in Section 2.1, the value of the magnetic 
flux density will decrease exponentially inside a superconductor when an external magnetic field is applied 
parallel to its surface. It will fall to 1/e of its magnitude at a distance inside the superconductor equal to the 
London penetration depth λL, sometimes referred to as just the penetration depth λ. (A.C. Rose-Innes and 
E.H. Rhoderick (op cit, pp. 35-36))
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Alexei Abrikosov was able to come up with his theory of type-II superconductors 

by an analysis of the Ginzburg-Landau equations for superconductors, which were 

discovered by the Russian physicists Vitaly Ginzburg, the third 2003 Nobel laureate, and 

Lev Landau in 1950. The Ginzburg-Landau (GL) theory was originally motivated by the 

need to explain the sudden destruction of superconductivity by a certain value of an 

applied magnetic field and an electric current. The GL theory is phenomenological, 

which means that it makes some ad-hoc assumptions in order to explain certain observed 

phenomena. The theory is able to predict whether a sample will be a type-I or type-II 

superconductor based on a quantity, which is now called the Ginzburg-Landau parameter 

κ, given by the ratio of the penetration depth to the coherence length of the sample: κ=λ/ξ.
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If the Ginzburg-Landau parameter is less than 2-1/2, magnetic fields and superconductivity 

cannot coexist, so the superconductor is of type-I. On the other hand, if κ > 2-1/2, 

magnetic fields and superconductivity can coexist and the superconductor is of type-II

(Fig. 6)12.

2. THE GINZBURG-LANDAU THEORY

2.1 Motivation for the theory: the London theory

One of the main motivations behind the development of Vitaly Ginzburg’s and 

Lev Landau’s theory of superconductivity was to introduce corrections to the

phenomenological theory developed by Fritz and Heinz London. In other words, the 

London brothers had introduced some ad-hoc assumptions into their theory in order to 

describe certain observed phenomena. The London brothers already knew about the 

Meissner effect and the fact that, as a material becomes superconducting at the critical 

temperature Tc, surface currents will suddenly develop and circulate in such a way as to 

12 Most of the concepts mentioned in the figure will (hopefully) make more sense later on.
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produce a magnetic field that will cancel all magnetic fields that would otherwise be 

present inside the material (Fig. 7). 13 Since the London brothers knew that the magnetic 

field inside the superconductor should be equal to zero, they changed certain equations

that predicted a constant for the magnitude of the magnetic field inside a superconductor 

to make sure that the magnetic field is zero. The resulting London equations should then 

be treated as approximations due to their phenomenological nature as opposed to, say, 

Maxwell’s equations, which are considered to be exact equations that reflect unbreakable 

physical laws.

13 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 20)
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The London theory has other drawbacks. It does not determine the surface tension 

between the superconducting and normal regions within the same material. It does not 

explain the destruction of superconductivity by an applied critical magnetic field or by 

certain strengths of electric currents. It also fails to explain why the critical magnetic 

fields are different for thin films and bulk samples made from the same material. The 

London theory is a classical theory, where electrons are treated as classical particles 

rather than quantum mechanical wave functions, and it makes two assumptions that are 

now known to be incorrect. 14 The first assumption is that the London penetration depth 

λL, defined as λL=(m/µ0nse
2)1/2, where m is the electron’s mass, e is its charge, and ns is 

the density of superconducting electrons, is independent of the magnitude of the applied 

magnetic field. The second assumption is that the London penetration depth is 

independent of the physical size of the material. These limitations of the London theory 

motivated Vitaly Ginzburg and Lev Landau to formulate their own theory of 

superconductivity that could explain the perplexing ideas about superconductivity that 

existed at that time. Ginzburg and Landau were able to clarify most of the issues that 

were left unexplained in the London theory.

2.2 The Ginzburg-Landau (GL) theory

The main difference between the GL theory and the London theory is that the 

former uses quantum mechanics in order to predict the effects of an applied magnetic 

field and the latter is a purely classical theory. The GL theory also turns out to be a 

phenomenological one since Ginzburg and Landau made certain assumptions in 

14 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 100)
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describing the transition from the normal state to the superconducting state when there is 

no applied magnetic field on the material.

Ginzburg and Landau described the number of superconducting electrons using an 

“effective wave function” Ψ. The density of superconducting electrons, ns, is associated15

with the square of the magnitude of this function, |Ψ|2. The theory also describes, close to 

the critical temperature Tc, the variation of the free energy 16  density of the 

superconducting state, fs, from that of the normal state, fn , as a Taylor series expansion in 

|Ψ|2:

fs = fn + α|Ψ|2 + (β/2) |Ψ|4 + … (1)

where a value of α=α0(T – Tc) and a positive constant for β is assumed in order to have a 

stable superconducting state. Fortunately, we do not have to worry about any of the terms 

beyond the quadratic term in Ψ when the temperature is sufficiently close to the critical 

value since that yields a good enough approximation to the free energy density of the 

superconducting state. 17

In order to account for the energy of the magnetic field, Ginzburg and Landau 

made use of a theorem18, which states that the motion of a charged particle that is 

subjected to a Lorentz force, such as the one produced by a magnetic field B, qv×B, can 

be completely accounted for by making the substitution p→ p-qA in the kinetic energy 

15 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 101)
16 The Gibbs free energy G is a thermodynamic function given by G=E–TS, where E is the internal energy, 
S is the entropy, and T is the temperature of the sample. It is a useful device in comparing the relative 
energies between different states of materials.
17 D.R. Tilley and J. Tilley, Superfluidity and Superconductivity, 3rd ed. (IOP Publishing, Bristol, 1990), pp. 
296-298.  
18 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 102)
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term19, where A is the vector potential, defined by B=∇×A. A full-blown quantum 

mechanical expression would not be complete without the use of quantum mechanical 

operators, such as the use of -i∇∇ instead of the momentum p. After making all of these 

substitutions, the expression for the free energy density of the superconducting state in 

proper quantum mechanical language becomes20,

fHrL= fn + a
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ2 +

1
2

b
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ4 +

1
2 m

ÄÄÄÄÄÄÄH- i ÑÑ - 2 eALyÄÄÄÄÄÄÄ2 +
B2

2 m0
-

1
2

m0 H0
2

(2)

where H0 is the applied magnetic field, B is the magnetic induction, m represents the 

mass of an electron, and e represents the fundamental unit of charge. In order to get an 

expression for the total free energy of the superconducting material, equation (2) has to 

be integrated over the whole volume of the material. Once this is done and after 

minimizing this expression with respect to the effective wave function Ψ, its complex 

conjugate Ψ*, and the vector potential A, the famous Ginzburg-Landau equations are 

obtained21:

1
2 m
H- iÑÑ- 2 eAL2 y + ay + bËyË2 y = 0 (3)

Je =
- ieÑ

m
Hy* Ñy - y Ñy*L- 4 e2

m
y* yA

.
(4)

After careful analysis of equations (3) and (4), we would notice that the former is 

similar to Schrödinger’s equation for a particle of mass m, charge e, and an energy 

19 The kinetic energy term, in its quantum mechanical version, is the last term of eq. A4 of Appendix A. In 
the quantum mechanical version, the substitution is performed on the del operator rather than on the 
momentum p as can be seen in the appendix.
20 Refer to Appendix A for a more detailed explanation of where the last few terms of equation 2 come 
from. 
21 Refer to Appendix A for a more detailed derivation of the Ginzburg-Landau equations.
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eigenvalue -α except for a repulsive potential from the nonlinear term in ψ. Equation (4) 

is similar in form to the expression for the current density in quantum mechanics.22 These 

equations accurately describe the dynamics of the charged particles in the 

superconducting material and, as we have just seen, they are expressed in quantum 

mechanical language. This means that whatever happens inside superconductors is in a 

quantum mechanical realm governed by quantum mechanical rules. 

One of the many useful aspects of the Ginzburg-Landau theory is that its 

equations can be used to obtain solutions of the effective wave function Ψ(x, y, z) and the 

vector potential A(x, y, z). These solutions to the GL equations minimize the free energy 

of the superconductor. It turns out that for weak applied magnetic fields, the GL 

equations reduce to the equations from the London theory, so it is a weak field 

approximation.23 On the other hand, for high applied magnetic fields, the GL equations 

are only soluble through numerical means. 

The GL theory was able to make some connections between the applied magnetic 

field and the penetration depth that had not been noticed before. For example, the GL 

theory predicts that |Ψ|2 is a constant in the interior of an infinitely thick superconducting 

plate. Moreover, the density of superconducting electrons is inversely proportional to the 

magnitude of the applied magnetic field. 24  As was intimated earlier, the London 

penetration depth depends on the number of superconducting electrons at the surface, so 

we now a have a connection between the magnitude of the applied magnetic field and the 

penetration depth of the material. Ginzburg and Landau were also able to make a 

connection between the penetration depth and the thickness of superconducting thin films.

22 The Royal Swedish Academy of Sciences (op cit, p. 8)
23 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 102)
24 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 103)
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After an application of boundary conditions, the variation of the effective wave function 

will be dependent upon the thickness of the film. As we just saw, the penetration depth 

depends on the density of superconducting electrons, which is just the square of the 

magnitude of the effective wave function. We now have a penetration depth that depends 

on the thickness of the film.25

The GL theory also predicts the manner in which materials make their transitions 

from their superconducting states to their normal states. For thin films, the theory predicts 

that there will be second-order, or smooth, transitions as the applied magnetic field 

reaches the enhanced critical magnetic field value from below. For bulk superconductors, 

the behavior would be different. They would have a second-order transition in the 

absence of an applied magnetic field, but a first-order discontinuous transition in the 

presence of a magnetic field (Fig. 8). The GL theory also states the specific critical 

thickness values at which the transitions change from being first order to second order. 

The material will have a first order transition for a > (51/2/2) λ and a second order 

transition for a < (51/2/2) λ.

25 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 103)
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For the cases in which the thickness of the superconductors does not fit with the 

limits described above, the values of the critical magnetic field have to be obtained 

numerically. In these cases and when the values of the penetration depth are measured 

from bulk superconductors, the GL theory, like the London theory, only gives 

approximate values for the critical magnetic fields. However, a major advantage of the 

GL theory is that it correctly predicts the behavior of the transitions for superconducting 

materials as a function of their thickness.26

3. THE THEORY OF TYPE-II SUPERCONDUCTORS

As indicated above, there are two kinds of superconductors: type-I and type-II 

superconductors. It was originally thought that the characteristics outlined above applied 

to any kind of metal that became a superconductor at the critical temperature. Scientists 

eventually discovered some anomalies in certain samples. These included the presence of 

magnetic fields inside the superconducting regions of the sample as well as the 

appearance of normal regions within the superconductor. These anomalies were usually 

thought to be the effects of impurities within the sample. Alexei Abrikosov was the one 

who came up with the conclusion that these features, originally thought to be anomalies,

were actually characteristics of a different type of superconductor, now known as a type-

II superconductor. The main feature that distinguishes type-I from type-II 

superconductors is the value of the surface energy.

26 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 104)
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3.1 The concept of the surface energy

A surface energy will show up in a sample whenever there are both normal and 

superconducting regions within the same sample. This tends to happen at the critical

magnetic field value, Hc, where normal samples become superconducting and vice 

versa.27 When there are both normal and superconducting regions in the same material, 

the change in going from one region to the other is not a drastic one. As was discussed 

earlier, the magnetic fields that correspond to normal regions tend to penetrate into the 

superconducting regions up to a distance about equal to the penetration depth λ and, over 

the same region, the density of superconducting electrons will increase to its highest

value over a distance about equal to the coherence length ξ. In order to get stable normal 

and superconducting regions in the material, the free energy density in each of these 

regions must have the same value.28

 As opposed to normal regions, the free energy density of superconducting 

regions will change due to two main factors. The first is that the free energy density will 

decrease due to the presence of superconducting electrons, which can be thought of as 

being more ordered than regular electrons. In other words, the higher the superconducting 

electron density, the lower the free energy density of that superconducting region. The 

free energy density is lowered by the amount gn-gs, where gn is the Gibbs free energy 

density of the normal phase and gs is the Gibbs free energy density of the 

superconducting phase.

27 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 80)
28 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 81)
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The second factor that will change the free energy density of the superconducting

region is its magnetization. The purpose of this magnetization is to cancel the applied 

magnetic flux in order for the magnetic fields in its interior to be zero. An effect of this 

magnetization is to increase the Gibbs free energy density equal to (1/2)µ0Hc
2.

 The superconducting region will be in equilibrium if these two contributions to 

the free energy density exactly cancel out.29 That is, if gn-gs=(1/2)µ0Hc
2. This happens 

throughout most of the superconducting regions of the material except near the 

boundaries between the normal and superconducting regions, where the degree of order 

increases, and the free energy density decreases, over a distance about equal to the 

coherence length ξ and the free energy increases over a distance about equal to the 

penetration depth λ due to its magnetization. A difference in the ξ and λ values will lead 

to a departure from a state in equilibrium. The coherence length and penetration depth 

values depend on the material and do not always have the same value, which means that 

the specific contributions to the free energy density from the superconducting electrons 

and from the magnetization will not cancel out.30 If the coherence length is longer than 

the penetration depth, the total free energy will increase, or have a positive value. The 

material is then said to have positive surface energy since this effect happens at the 

boundary, or surface, between the normal and superconducting regions (refer back to Fig. 

5). Type-I superconductors have a positive surface energy. On the other hand, if the 

penetration depth is longer than the coherence length, the opposite effect will happen and 

the material will have a negative surface energy, which is an intrinsic characteristic of 

type-II superconductors.

29 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 81)
30 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 81)
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3.2 The mixed state

The presence of positive and negative surface energy implies that, for type-I 

superconductors, if normal regions were to appear, these would only tend to increase the 

free energy of the material. In other words, this situation would be energetically 

unfavorable. This is why type-I superconductors always remain totally superconducting 

at values of an applied magnetic field smaller than the critical magnetic field value. On 

the other hand, type-II superconductors have a negative surface energy, which implies 

that the appearance of normal regions within the superconductor would tend to reduce the 

material’s free energy and it would then be energetically favorable for them if many 

normal regions appear within the superconductor. These normal regions would be 

oriented parallel to the applied magnetic field and, in order to maximize the surface area 

to a certain volume of material so that the free energy of the metal is as low as possible, 

the shape of these normal regions, also called normal cores, is cylindrical in shape. The 

radius of these normal cores is also as small as possible in order to maximize the surface 

area. The periodicity of these normal cores is less than 10-7 m.31 This condition is known

as the mixed state and, since this only happens with materials that have a negative surface 

energy, it is an intrinsic property of type-II superconductors above the lower critical 

magnetic field Hc1.

As was shown earlier, materials that have a coherence length that is longer than 

its penetration depth will have a positive surface energy. The values of the coherence 

length and penetration depth depend on the material, but certain alloys and impure metals 

tend to have a longer penetration depth than the coherence length. This is due to the 

31 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 178)
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shorter electron mean free path for these materials in both the normal and 

superconducting states.32 This makes sense if we think of superconductors as having both 

normal electrons near the boundary between the normal and superconducting regions and 

superconducting electrons in the rest of the material. If the normal electrons have a 

shorter mean free path than the superconducting electrons, then it follows that the 

coherence length will be shorter. From Fig. 9, it is apparent that if the coherence length is 

shorter than the penetration depth, the free energy contributions from the magnetization 

and the electron ordering would not cancel near the boundary and the net free energy 

density would in fact be negative. This is why alloys and impure metals tend to be type-II 

superconductors.

32 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 79)
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Fig. 10 shows a magnetic field Ha being applied to a type-II superconductor. 

Attentive readers will notice something odd about it. It shows a type-II superconductor 

with an applied magnetic field pointing in the upwards direction. The diamagnetic 

properties of superconductors will cause surface currents to circulate in the clockwise 

direction in order to produce a magnetic field that will cancel the applied magnetic field 

inside the superconductor. However, currents are seen to be circulating in the opposite 

direction along the surface of the normal cores. The reason for this phenomenon is related 

to a property of superconductors that have normal regions inside the material. Currents 

will develop along the surface of these normal regions in order to produce a magnetic 

flux that is parallel to the direction of the applied magnetic field. In other words, these 

normal regions are trying to oppose the canceling effects of the magnetic field inside the 

material caused by its superconducting regions.33

Due to the small radius of the normal cores and the fact that the changes in the 

magnitude of the magnetic field and the density of superconducting electrons are gradual, 

the boundaries of these normal regions are hard to define. However, there is a periodicity 

33 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 27)
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of the properties of these normal cores throughout the type-II superconductor.34 That is, 

for every normal core within the superconductor, the density of the superconducting 

electrons will drop to zero at the center. This means that the diameter of a normal core 

can be approximated as two coherence lengths wide and that there is a very thin line of 

normal material along the center of each normal core. The magnetic flux density along 

the center of each core also decreases over a distance about equal to the penetration depth 

going towards the superconducting region. These periodic properties of the normal cores 

can be seen in Fig. 11.

Since the radius of the normal cylinders can be approximated as being equal to the 

coherence length, some other approximations can be made regarding the value of the free 

energy increase or decrease at the normal cores. Since the number of superconducting 

34 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 178) 
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electrons decreases as we get near the normal core, the corresponding free energy will 

tend to increase due to a decrease in the order provided by the superconducting electrons. 

This increase in the free energy per unit length of core is given by πξ2 (1/2)µ0Hc
2. On the 

other hand, there will be a decrease in the free energy per unit length of core given by

πλ2 (1/2)µ0Ha
2, where Ha is the magnitude of the applied magnetic field, due to fact that 

the normal regions are not diamagnetic.35 If the normal regions were diamagnetic, there 

would have been an increase in the free energy. In order to have a net decrease in the free 

energy from normal core formation, the increase must be less than the decrease in the free 

energy per unit length of core:

πξ2 (1/2)µ0Hc
2<πλ2 (1/2)µ0Ha

2 (5)

For certain values of the critical magnetic field and applied magnetic field, it is 

apparent by looking at eq. 5 that the coherence length must be smaller than the 

penetration depth in order for normal cores to appear in the superconductor. Fortunately, 

this result agrees with fig. 9.

As stated earlier, it was Alexei Abrikosov who came up with a theoretical 

explanation for the various characteristics of type-II superconductors mentioned above.

Abrikosov came to the conclusion that for superconductors with a Ginzburg-Landau 

parameter 36 value of κ>2-1/2, otherwise known as type-II superconductors, 

superconducting regions will start to appear at a certain value of an applied magnetic 

field which would correspond to a stronger magnetic field than the critical magnetic field

value for type-I superconductors.37 This magnetic field value is now known as the upper 

35 A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 179)
36 Recall that the Ginzburg-Landau parameter is given by κ=λ/ξ. 
37 The Royal Swedish Academy of Sciences (op cit, p. 9)
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critical magnetic field Hc2, given by38 Hc2=Hcκ(2)1/2. Above this value, superconductivity 

would cease to exist. Abrikosov also predicted another value for a critical magnetic field, 

called the lower critical magnetic field Hc1, below which there would be no normal 

regions present in the superconductor. That is, there is a minimum magnetic field strength 

required for normal regions to appear in the material. This is intimated by eq. 5, which 

says that, for certain values of the coherence length and penetration depth, the applied 

magnetic field must be greater than a certain fraction of the critical magnetic field value. 

Abrikosov also concluded that a lattice of normal regions with periodically distributed 

magnetic fields, now known as an Abrikosov lattice, would be the most energetically 

favorable mechanism for a type-II superconductor39 (Fig. 12).  

Abrikosov arrived at his normal core predictions through a careful analysis of the 

GL equations. More specifically, he noticed that for magnetic field values near the upper 

critical magnetic field, the effective wave function is very small and the nonlinear term in 

the first GL equation can be neglected. Abrikosov also noticed that his effective wave 

function solutions corresponded to vortices. This approach only works at high magnetic 

38 The Royal Swedish Academy of Sciences (op cit, p. 10)
39 A.A. Abrikosov, Fundamentals of the Theory of Metals, (Elsevier Science Publishers, Amsterdam, 1988), 
pp. 414-415.



30

field values, but he was able to show that the vortex solutions also exist for weaker 

fields.40

After careful analysis of the first GL equation41 (eq. 3), the reader will notice that 

it has a term A-(∇/2e)∇φ. In order for the magnetic field to be a constant inside the 

superconductor, we must choose a suitable vector potential. A linear increase of the 

vector potential will do the job. For example, we can say Hz=dAy/dx, where Ay= Hz x. In 

other words, we let the vector potential increase linearly in the x-direction. A problem 

immediately arises with the term from the first GL equation if we let the vector potential 

increase this way; it goes to infinity. This also implies that the free energy density goes to 

infinity. In order to keep the term finite, the increase in the vector potential must be 

compensated by a corresponding increase in the second part of the term, which 

corresponds to jumps in the phase. If we set the gradient of the phase equal to the change 

in the vector potential over one period of the lattice structure and solve for the period of 

the structure, the solutions for square and triangular lattices will be obtained.42 The 

effective wave function will vanish at the vortices and their phase will change by 2π

along a closed path around these vortices. 43Abrikosov discovered these solutions in 1954, 

but did not publish them until 1957.

40 Abrikosov (op cit, p. 416)
41 Recall that the order parameter is complex: Ψ=|Ψ|eiφ. If we substitute this into eq. 3 and let the del 
operator work on the effective wave function, we get the term A-(∇/2e)∇φ in the equation.
42 Abrikosov (op cit, p. 417-418)
43 Abrikosov (op cit, p. 416)
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4. SUPERFLUID 3He – AN ANISOTROPIC SUPERFLUID

Up to this point, we have been considering theories of superconductivity, which

occurs due to the formation of Cooper pairs of charged particles. We will now turn to the 

counterpart of superconductivity: superfluidity. The main mechanism behind this 

phenomenon is the formation of Cooper pairs of atoms rather than electrons. This means 

that the order parameter now describes the probability amplitude of the superfluid Cooper 

pairs. Cooper pair formation is partly responsible for the lack of viscosity in He liquids 

near the critical temperature for superconductors (around 3 or 4 K).

The reason why 3He and 4He have very different properties at low temperatures is 

due to the net spin of these atoms. From the upper indices of these atoms, we can see that 

one of them has an odd and the other an even number of nucleons. The former will have a 

nonzero net spin (I=1/2) and the latter will have a zero net spin since the individual spins 

cancel out. This means that the former will obey Fermi-Dirac statistics and the latter will 

obey Bose-Einstein statistics. 

As was mentioned earlier, superconductivity involves Cooper pairs of electrons. 

Interestingly, these Cooper pairs are formed through electron-phonon interactions, 

mediated by the metallic lattice of atoms. The electrons in a Cooper pair have opposite 

spin projections and opposite momenta, making them structureless and bosonic objects44. 

As soon as these Cooper pairs are formed, they tend to remain in their lowest energy state. 

Since these are bosonic objects, they also tend to occupy the same space and this leads to 

44 D. Vollhardt and P. Wölfle (op cit, p. 4)
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a higher degree of order in the material. Cooper pairs are also long lived due to a nearly 

full Fermi sea45 near absolute zero (Fig. 13).

This Cooper pairing mechanism cannot work for Helium-3 since it does not have 

an underlying crystal lattice that could mediate electron-phonon interactions. The reason 

why 3He atoms form Cooper pairs has to do with an intrinsic property of the liquid itself. 

A couple of the main features of the interatomic potential of 3He are the huge repulsive 

region at very short distances and the weak attractive van der Waals region at medium to 

long distances.46 Due to the huge repulsive core, the variation in the potential does not 

change much between the relative angular momentum values of l=0 and l=1. However, 

the 3He atoms always settle into the l=1 state since the oblong shape of the electron cloud 

of each 3He atom due to the relative angular momentum of l=1 allows the atoms to be 

more closely packed together than the spherical shape of the electron cloud due to the 

relative angular momentum of l=0.

45 This concept refers to the three-dimensional momentum space, represented as a sphere of radius pF of the 
constituent electrons of the metal. The sea is said to be full when all the quantum states with a kinetic 
energy less than that which corresponds to a momentum pF, known as the Fermi energy, are taken. This 
happens at absolute zero. (A.C. Rose-Innes and E.H. Rhoderick (op cit, p. 121))
46 D. Vollhardt and P. Wölfle (op cit, p. 5)
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Superfluids have different phases like matter’s gas, liquid, and solid phases. The 

superfluid phases are classified into three main categories: A, B, and A1 phases. As we 

shall see shortly, these phases have very different properties, but they all have two things 

in common: the constituent Cooper pairs of atoms have a net spin S=1 and orbital angular 

momentum l=1 as opposed to Cooper pairs of electrons in superconductors, with S and l

both equal to zero.47 These characteristics lead to the superfluid Cooper pairs being 

known as having a “spin-triplet p-wave” pairing while superconducting Cooper pairs are 

in the “spin-singlet s-wave” state. The properties of 3He Cooper pairs are much more 

complex than those of superconducting Cooper pairs since the former has 3 spin and 3 

orbital angular momentum substates, producing a total of nine substates for the Cooper 

pair wave function. On the other hand, superconducting electron Cooper pairs only have 

a single state.

The superfluid A-phase, also known as the axial p-wave state, has many 

interesting characteristics. The spins of the individual atoms that form the Cooper pair are 

perpendicular to the axis of orbital motion.48 The energy gap49 function also has the 

property that it has zero points along the direction of the orbital angular momentum 

projection on the Fermi surface50 (Fig. 14). There are only two spin states allowed in the 

A-phase: S=±1. This phase can be described by a state known as the ABM state, 

appropriately named after its discoverers: P.W. Anderson, W. Brinkman, and P. Morel. 

The A-phase and the ABM state are thus analogous to each other.

47 D. Vollhardt and P. Wölfle (op cit, p. 8)
48 O.V. Lounasmaa and G.R. Pickett: The 3He Superfluids, Scientific American, June 1990, p. 105.
49 The energy gap is an energy range around the Fermi energy that is forbidden for electrons. This energy 
comes about from the electron-phonon interactions. (W. Buckel, Superconductivity: Fundamentals and 
Applications, (VCH Publishers, New York, 1991), pp. 39-40)
50 The Fermi surface is a surface, at a certain radius, of the Fermi sea in momentum space. (Abrikosov (op 
cit, p. 25))
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As opposed to the A-phase, in the superfluid B-phase all three spin substates are 

allowed: (S=±1 and S=0), and it occurs at lower temperatures than the A-phase. Its 

energy gap function is isotropic even though the Cooper pair wave function is 

intrinsically anisotropic. This phase can be described by a state known as the BW state, 

named after R. Balian and N.R. Werthamer. Another phase known as the A1 phase occurs 

at the upper temperature limit of the A-phase, but at much higher applied magnetic field 

values. The only allowed spin states for the A1 phase are S=±1 states. The A2 and B2

phases are basically the same as the A and B phases except with slightly different 

structures due to the presence of an applied magnetic field (Table 1).51 The P-T-H phase 

diagram, where the H refers to an applied magnetic field value, shown in Fig. 15 should 

clarify the characteristics of the various superfluid phases.

51 D. Vollhardt and P. Wölfle (op cit, p. 7)
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Scientists eventually found a way of studying the properties of the superfluid 

phases that were just mentioned and identifying the order parameter52 structure of these 

phases. The technique that they use is called nuclear magnetic resonance (NMR). In this 

technique, the object being studied would be subjected to a strong magnetic field H0 in a 

certain direction, which shall be called the z-direction. The spin of the objects being 

studied will then precess about the z-direction. A transition in the z component of the spin 

from a positive to a negative value can be induced if another, weaker, magnetic field is 

52 Recall that the order parameter refers to the probability amplitude of the superfluid Cooper pairs.
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applied in a direction perpendicular to the H0 field. A strong “resonance” occurs at a 

particular frequency, known as the Larmor frequency, which is given by ωL=γH0, where γ
is the gyromagnetic ratio of the nucleus. For interactions that conserve the spin, the 

resonance would still occur at the Larmor frequency. However, for interactions that do 

not conserve spin, such as the spin-orbit interaction due to the nuclear spins’ dipole 

coupling of the Cooper pair members, a small shift in the resonant frequency was 

expected. What actually happened was a very big shift in the resonant frequency.53

Anthony Leggett attributed this phenomenon to “spontaneously broken spin-orbit 

symmetry” of the Cooper pairs, where the spin and orbital angular momentum directions 

are characterized by some macroscopic order, such as the configurations depicted in Fig. 

1(d) and (e).54 He was able to come up with an expression for the expected shift in the

resonant frequency when a superfluid sample in the A-phase is being used:

ωt
2=ωL

2+ΩA
2(T) (6)

where ωt is the value of the new transverse resonant frequency and ΩA is a temperature-

dependent quantity proportional to the dipole coupling constant. 55  Aside from a 

transverse resonant frequency, Leggett predicted a longitudinal resonant frequency for 

both the A and B phases, where a high-frequency magnetic field would now be directed 

53 D. Vollhardt and P. Wölfle (op cit, p. 18)
54 D. Vollhardt and P. Wölfle (op cit, p. 19)
55 The coupling constant between the nuclear spins of the 3He atoms, which reflects the fact that there is a 
weak attraction between the atoms due to dipole-dipole interactions, is given by

gDHTL» m0
2

a3
JDHTL

EF
N2 n

where µ0 is the nuclear magnetic moment, a is the average atomic distance, ∆(T) is the average energy gap, 
EF is the Fermi energy, and n is the particle density. The first factor corresponds to the average dipole 
energy of the atoms at a distance a and the second factor is a measurement of the probability for the two 
atoms to form a Cooper pair. (D. Vollhardt and P. Wölfle (op cit, p. 13))
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along the direction of the constant magnetic field H0. He predicted the following value 

for the A-phase:

ωl=ΩA(T) (7)

where the term on the right is the same as the one in eq. 6.

Leggett was the first to identify the A phase with the ABM state, but was 

buffaloed by the fact that, according to “weak coupling theory”, the BW state is the one 

that is always in the lowest energy state. That is, superfluids would naturally prefer to be 

in the lowest energy state, so Leggett did not know why the A phase should exist at all. In 

order to understand this, effects from “strong coupling theory” need to be taken into 

account.

P.W. Anderson and W. Brinkman were able to explain why the A phase occurs 

where it does in the P-T-H diagram instead of the BW state. There is an effect that helps 

explain why the A phase occurs at high pressures: “[it] is based on a feedback mechanism: 

the pair correlations in the condensed state change the pairing interaction between the 

3He quasiparticles56, the modification depending on the actual state itself.”57 An example 

that Anderson and Brinkman considered was the role of spin fluctuations, which are more 

pronounced at higher pressures.

56 Not all helium-3 atoms pair up into Cooper pairs. The empty places, which represent the places that free 
helium-3 atoms would otherwise occupy (and pair up with another helium-3 atom to form a Cooper pair), 
are known as “holes”. That is, there are unpaired atoms and corresponding “shadow” particles called 
“holes”. The free atoms are known as quasiparticles and the holes are known as quasiholes. It turns out that 
at high momenta, the particlelike properties dominate while at low momenta, the holelike properties 
dominate. (O.V. Lounasmaa and G.R. Pickett (op cit, p. 108))
57 D. Vollhardt and P. Wölfle (op cit, p. 12)
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5. CONCLUSION

As has been intimated in our discussion of superconductors and superfluids, a 

reason why they are so important is that they allow us to see quantum mechanical 

behavior macroscopically, so these materials constitute a medium that physicists can use 

to directly analyze quantum theory. The 2001 Nobel Prize, awarded to Eric A. Cornell, 

Wolfgang Ketterle, and Carl E. Wieman "for the achievement of Bose-Einstein 

condensation in dilute gases of alkali atoms, and for early fundamental studies of the 

properties of the condensates", is further evidence of the importance of being able to see 

quantum mechanical effects macroscopically.

Besides the importance of superconductors and superfluids themelves, the 

theories behind them have allowed scientists to gain a deeper understanding of other 

phenomena. More specifically, the Ginzburg-Landau theory is relevant to many fields in 

physics. An example from particle physics is string theory. Abrikosov’s theory of type-II 

superconductors is important in the study of high-temperature superconductors, which are 

extreme examples of type-II superconductors. Leggett’s theory also helps explain

complex phase transitions in many fields of physics, including particle physics, 

cosmology, and liquid crystal physics.
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APPENDIX A: THE GL EQUATIONS58

The Landau theory of phase transitions regards these processes as going from an 

ordered state to a disordered state. An order parameter φ may be defined as

f =
n+ - n-

n+ + n-
(A1)

where n+ is the number of spins pointing upwards and n- is the number of spins pointing 

downwards. We are only concerned with the temperature region near Tc, where the order 

parameter is small. Therefore, we can expand the free energy F as a power series in φ:

F = Fn + λφ + αφ2 + γφ3 + (1/2)βφ4 (A2)

where the coefficients are functions of T and can be expanded in powers of (T- Tc). For 

T> Tc, the order parameter will have a minimum at φ = 0, where we can assume the same 

number of upward spins and downward spins. If we think of λ as a derivative of F with 

respect to the order parameter, we can see that it would be zero. In fact, it is zero for all T, 

if we think in terms of the Taylor expansion of λ. It also turns out that the term φ3 does

not even occur in superconductors, so we now have a simpler version of eq. A2:

F = Fn + α(T)φ2 + (1/2)β(T)φ4
. (A3)

In order to apply the Landau theory to superconductors, we need to regard the 

wave function as the order parameter φ. This means that eq. A3 must now be a function 

of position. After adapting the wave function to eq. A3, we will get an additional “kinetic 

energy” term proportional to ÈÑyÈ2  :

fHrL= fn + a
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ2 +

1
2

b
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ4 +

Ñ2

2 m

ÄÄÄÄÄÄÄÑyHrLÄÄÄÄÄÄÄ2 (A4)

58 Adapted from D.R. Tilley and J. Tilley (op cit, pp. 298-302)  
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where the last term’s coefficient has that form due to convention in the GL theory and the 

square of the wave function still represents the superconducting electron density.

Through dimensional analysis, we can see that a certain ratio of coefficients turns out to 

represent a length:

xHTL=ikjj Ñ2

2 mÈaÈy{zz1 2 (A5)

which is the definition of the coherence length.

If B is the total induction in the superconductor and we take into account an 

applied magnetic field H0, we will expect the currents produced by the superconducting 

electrons to produce a magnetic field given by B – µ0H0. Thus, we can write the 

following equation:

Ñ´ HB - m0 H0L= m0 Je (A6)

where Je is the current produced by the superconducting electrons.  

Equation A4 now has to be modified to include the magnetic field effects by 

implementing the following substitution that takes into account the vector potential A:

Ñ ® Ñ -
2 ie
Ñ

A
.

Implementing these changes and adding the magnetic field energy, we get:

fHrL= fn + a
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ2 +

1
2

b
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ4 +

1
2 m

ÄÄÄÄÄÄÄH- i ÑÑ - 2 eALyÄÄÄÄÄÄÄ2 +
B2

2 m0
-

1
2

m0 H0
2 (A7)

where the last term represents the magnetic energy from the coils that produce the applied 

magnetic field H0. If we integrate eq. A7 over the volume of the material, we would get 

the Helmholtz free energy, which is given by F = U – TΣ. In this last expression, U is the 
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internal energy of the superconductor in the presence of an applied magnetic field, and Σ

is its entropy. At equilibrium, with a magnetization M, the superconductor satisfies the 

following thermodynamic relationship for the internal energy differential:

dU = TdS + H0 ×M. (A8)

The Gibbs free energy, given in eq. A9, should now be minimized in order to find 

the stable state of the superconductor with an associated temperature value T and applied 

magnetic field value H0.

GHT , H0L= U - TS - H0 ×M. (A9)

The Gibbs free energy can be obtained by integrating the Gibbs free energy 

density over the volume of the material:

G =àgHrLd3 r
.

(A10)

The Gibbs free energy density is now given by the following function:

gHrL= fn + a
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ2 +

1
2

b
ÄÄÄÄÄÄÄyHrLÄÄÄÄÄÄÄ4 +

1
2 m

ÄÄÄÄÄÄÄH- i ÑÑ - 2 eALyÄÄÄÄÄÄÄ2 +
B2

2 m0
-

1
2

m0 H0
2

.
(A11)

A very useful mechanism in minimizing functions is the Euler-Lagrange equation

of the calculus of variations. Since the Gibbs free energy depends on the wave function ψ
and the vector potential A, we can apply the Euler-Lagrange equations the following way:

dG
dy* = 0 (A12)

¶g
¶y* - ã

j

¶
¶x j

¶g
¶HÑj y*L= 0

.

(A13)

Eq. A12 is just shorthand notation for eq. A13. Note that in eqs. A12 and A13, g

is being differentiated with respect to ψ*. Recall that the wave function is complex, so ψ* 
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represents the complex conjugate. After performing the operation depicted in eq. A13 and 

using the fact that div A = 0, eq. A13 becomes

1
2 m
H- iÑÑ- 2 eAL2 y + ay + bËyË2 y = 0

.
(A14)

Eq. A14 is the first GL equation. Assuming we know the vector potential, we can 

use the first GL equation to obtain the behavior of the wave function throughout the 

superconductor.

Ginzburg and Landau also came up with some boundary conditions to 

complement the differential equation of A14. They did this by saying that the variation of 

G when ψ* varies by δψ* includes, first of all, the volume integral of the left-hand side of 

eq. A13 multiplied by δψ*, and also the following surface integral:

Is = àdy* ¶g
¶HÑy*L×n â S (A15)

where n is a normal vector to the surface of the superconductor. Eq. A15 is usually 

neglected since ψ*, and therefore δψ*, is usually taken to be zero at the surface 

boundaries. However, such a standing wave condition cannot be applied to 

superconductors since it would mean, for example, that the critical temperature would 

oscillate with the thickness of a thin film specimen and this is not the case. Ginzburg and 

Landau then argued that the second term in the integral must be zero:

n ×
¶g

¶HÑy*L= 0
.

(A16)

Carrying out the operation depicted in eq. A16 would yield:

n · (-i∇∇ - 2eA)ψ = 0 .  (A17)
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Eq. A17 only holds at the boundaries between superconductors and insulators. As 

we have seen, when a superconducting regions is right next to a normal, metallic, region 

the wave function is able to penetrate a small distance into the normal region.

To get the second GL equation, we have to minimize the Gibbs free energy with 

respect to the vector potential, which implies the use of the Euler-Lagrange equation:

¶g
¶ Ai

- ã
j

¶
¶x j

¶g

¶I¶Ai

¶x j
M= 0

.

(A18)

The second term in eq. A18 is equal to (1/µ0) curl curl A, and from the definition 

of the vector potential, we can write it as (1/µ0) curl B. This last expression is 

immediately recognized as part of one of Maxwell’s equations, which is equal to the 

current density Je. After performing the rest of the necessary calculus on eq. A11, eq. 

A18 becomes

Je =
- ieÑ

m
Hy* Ñy - y Ñy*L- 4 e2

m
y* yA

.
(A19)

which is the second GL equation. It is similar in form to the quantum mechanical 

description of a current. A change in the normalization of ψ is required to get the 

expression in terms of the mass of the Cooper pairs, 2me.
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