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ABSTRACT

Booming and squeaking sands produce incredible acoustic emissions when they 

avalanche (in the case of booming sands) or are struck or compressed (in the case of 

squeaking sands).  Understanding this phenomenon could lead to advances in other areas 

of granular physics, such as the problem of treating granular flows with fluid mechanical 

models.  This paper gives a brief overview of several topics in granular physics, reviews 

experimental work done to determine the properties of booming sands, and outlines two 

theories of the physical mechanism that produces acoustic emissions, the first 

mechanical, the second fluid mechanical.  

I. INTRODUCTION

Certain desert and back beach dunes throughout the world produce incredible, 

other worldly acoustic emissions when they avalanche.  As of 1997, at least 31 booming 

dunes had been identified from California to the Kalahari,1 which produce sounds likened 

to drums, low-flying propeller driven aircraft, thunder, and other notably loud 

occurrences.    The dominant frequencies of the sounds produced range from 50-200 Hz 

for this booming sand.2  Sand known as squeaking, sonorous musical, or frog sand 

produces a squeaking sound with a dominant frequency of 500-1500 Hz when sheared at 

roughly 45° from normal, as when stepped on or struck with a rod.2 Though they have 
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been recorded for at least 1500 years3 and studied for over a century4, the underlying 

physics are still unclear.

At this point, the question remains, “Why does one study booming sand at all?”  

As Peter Haff, a noted researcher in the field of granular physics, states, “To understand 

booming is to understand much of the yet poorly investigated field of granular 

mechanics.”5 Physicists, geologists, and engineers study the properties and mechanics of 

booming sand in the hope of shedding light on the broader area of granular physics.  This 

increasingly popular field of study is far more important than the casual observer may 

realize.  “The processing of granular media and aggregates,” as Duran, another important 

granular researcher, points out, “consumes roughly 10% of all the energy produced on 

this planet,” and is second only to the processing of water in importance to humans.6

Given the great investment of energy and recourses, even a modest increase in efficiency 

in processing granular matter would have dramatic economic impacts due to the 

enormous scale of any possible applications.  

Though important, the physics of granular materials is complicated, nonlinear, 

and still not well understood.  I will begin with an introduction to the difficulties of 

granular physics and the classical mechanics used to develop it.  From there I will cover a 

few more specific topics of interest:  packing; pressure and force distribution; the stick-

slip effect and avalanching; fluid-dynamical descriptions of granulars; and size 

segregation.  I will then review experimental work done to date on booming sands and 

discuss the properties that differentiate them from normal sand.  From there, I will give 

an overview of two theories, one strictly mechanical and one fluid mechanical in nature, 

of the actual mechanism that is suspected of producing the acoustic emissions in both 

booming and squeaking sands.  
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II. GRANULAR PHYSICS

It seems as though the physics of such ordinary materials composed of small, 

individually well understood solid particles would be just as understandable when 

aggregates of them are examined; however, granular physics is far from simple and well 

understood.  This section outlines the problems faced by researchers in this field, explains 

some of the physical models used to describe granular materials, and discusses some 

unusual properties of granulars.  A good introductory text (also the only introductory 

text) on granular physics is the book by Duran, from which many of the following 

developments and figures are adapted or taken.6

A. Difficulties in dealing with granular material

Researchers cannot simply extend theories developed to explain the behavior of 

solids, liquids, and gases because granular matter is distinctly different from any other 

state of matter.7  Unlike solids, granular aggregates do not transmit forces homogeneously 

and their density varies with the packing configurations of individual grains.  The length 

and time scales over which fluid-dynamical equations are valid are much too small to be 

applied to granular flow.  Finally, necessarily inelastic collisions between grains preclude 

the application of the kinetic theory of gases.  The highly energetic fourth state of matter, 

plasma, is clearly a poor model for a placid pile of sand.  The inability to apply 

previously developed theories is quite marked, and can be easily demonstrated.

Following is an attempt to use a simple approximation, whose failure will show 

that a granular material cannot be approximated as a gas by treating each individual grain 

as if it were a molecule in a fluid.6  We will make the assumption that the behavior of a 

sand pile can be understood by treating its constituent sand grains as the molecules of a 

gas.  We will start with classical gravitational potential energy of the form E p = mgh , 
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where Ep is the energy, m is the mass of the sand grain, h is the height of a sand grain 

above level ground, and g is the gravitational acceleration at the earth’s surface.  We will 

equate this Ep to the thermal energy of a body, typically given, by E = kT , where k is 

Boltzmann’s constant and T is the temperature of the body.  Equating the potential and 

the thermal energy and solving for T using typical values of m for sand, m = 300µg and 

assuming h = 300µm, a typical diameter for a grain of sand, we find T ≈1015K.  This 

value of T is far larger than temperatures that a sand pile would experience under normal 

conditions on earth, which suggests to us that it is unfeasible to simply approximate a 

macroscopic granular aggregate as a gas by equating the individual grains with 

microscopic particles.  

B. Classical mechanical concerns

Classical mechanics serves as the basis of granular physics, although an infinitely 

powerful computer and intimate knowledge of each and every constituent particle would 

be needed to exactly solve the equations of motion for all grains involved.  Dry friction, 

in the form Ff = µN , between two objects sliding on one another plays an important role, 

where Ff  is the magnitude of the frictional force (exerted in the direction opposite the 

sliding motion), N  is the normal force between the object experiencing Ff and the 

surface exerting the force on it, and µ is the coefficient of friction, which varies with the 

materials concerned and is different for static and dynamic situations.  For a high friction 

situation, say a block of wood on sandpaper, µ is large in contrast to a low friction 

situation, like a hockey puck on an a sheet of ice, for which µ would be small.  Below in 

FIG. 1 of a block sliding across a level surface it can be seen that the frictional force will 

act in the opposite direction to the applied force F.
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FIG. 1. Here, the force F accelerates a block of mass m to the right across 
a level surface, but the frictional force, Ff, in the opposite direction, 
counteracts this acceleration.  gF  is the weight of the block.

Basic kinematics and conservation laws are also useful when describing granular 

behavior.  Also important are the dynamics of individual grain-grain collisions, which are 

complicated due to the facts that the collisions are between finite objects, that collisions 

can be off center, that they can involve rotations of the particles due to frictional 

interactions, and that they are inelastic.  The coefficient of restitution, 0 ≤ ε ≤1, is used to 

measure the inelasticity of the collisions.  If ε = 0 the collisions are totally inelastic and 

all kinetic energy is converted to sound waves, heat, or other forms of energy (see the one 

dimensional collision in FIG. 2).  If ε =1the collision is perfectly elastic and no kinetic 

energy is lost (see the one dimensional collision in FIG. 2).  We will be seeking models 

that can describe an entire collection of grains, but we will refer back to this level of 

grain-grain and grain-surface interaction throughout the following discussions.

FNFf µ=

N

mgFg =

T
im

e
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FIG. 2.  On the left, the spheres taking part in the totally elastic collision 
lose no kinetic energy, whereas the totally inelastic collision on the right 
releases the kinetic energy of the spheres as sound or other forms of 
energy (represented by starburst pattern in the figure) and remain 
stationary after the collision.  

C. Packing of a granular material

The behavior of a granular aggregate is highly dependent upon its packing and 

compressibility, and it is useful to define and examine parameters that describe them.  To 

describe packing, first consider a unit cell of four identical circles of radius R, which are 

continuously in contact, and a parallelogram drawn connecting the centers of the circles, 

shown in FIG. 3.   We are going to observe the total area of the figure S, the area of all 

four spheres plus the area of the void between them, as defined in this equation:

S = 3πR2 + hhhv

2
,                                                      (1)

and track the change in this area, ∆S, as the formation of the circles is deformed. The 

diagonals of the parallelogram, hh and hv, are related by the following equation do to the 

restriction that the spheres must always remain in contact:

hh
2 + hv

2 =16R2 .                    (2)

This allows us to write ∆S as

X

Elastic Inelastic
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∆S ≈ hh

2
16R2 − hh

2 = 2hhR 1− hh
2

(4R)2
.                                    (3)

FIG. 3. Formation of four identical circles and inscribed parallelogram 
connecting their centers, which is used to study the packing configuration 
of granular materials.6

The figure below, FIG. 4., is a normalized plot of ∆S as a function of hh, that is, 

the change in the collective area of the circles and the void between them as the length of 

the horizontal diagonal is changed by some squeezing or stretching force. (Remember 

that the circles are constrained such that they must remain in contact with one another 

without deforming.)  At the left endpoint the left and right circles are in contact, and the 

top and bottom circles are maximally separated.  Correspondingly, at the right endpoint 

the top and bottom circles are in contact and the left and right circles are maximally 

separated.  The most notable feature of the plot is the maximum.  This means that, if we 

begin in the configuration signified by the left endpoint and compress the cell from the 

left and right, we will see the collective area of the figure increase until we reach the 

maximum.  In this regime, a counterintuitive principle is at work; a compressive stress 

R

hh

hv



8

actually increases area.  This principle is known as Reynolds’s dilatancy principle,6 and it 

states that well compacted granular materials will expand when compressed.  After 

reaching the maximum seen in the plot, further compression along the horizontal axis of 

the figure will again decrease the area, which is the response of an ordinary solid to 

compression.  These regimes are shown as regions on the graph in FIG. 4.

This effect is observed quite readily when one is walking on wet sand.  The foot 

shearing the packed sand causes it to expand, or rather, to shift into a different packing 

configuration that takes up more total volume and that leaves more interstitial space into 

which water can drain.  This is the result seen above, and it depends on the various 

lattices into which grains can pack themselves.  In two dimensions, a triangular lattice is 

the optimal way to pack circles, and any shearing of the grains in this configuration 

(shown on the left in FIG. 5) will cause them to move into another, less compacted 

configuration (shown right in FIG. 5).

FIG. 4. Normalized plot of the surface area of a configuration of four 
identical circles versus the normalized length of the horizontal diagonal. 
Close-packed configurations of circles (see FIG. 3) “dilate,” or grow 
larger if they are compressed when they are already in an optimized 
packing.6

(hh//2R)

Tighter packing Loser packing
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FIG. 5. Demonstrates tightest packing versus looser packing of circles.  If 
the stack of circles on the left were sheared into the configuration on the 
right, its total area would expand.  

D.  Pressure and force distribution

In addition to Reynolds’s property of dilatancy, granular materials exhibit another 

unusual property; the nonlinear distribution of forces.  Granular materials are not 

continuous and the actual grain-grain contacts are distributed randomly, and, therefore, 

forces applied to an aggregate of grains are transmitted nonlinearly through these random 

grain-grain contacts.  Below, FIG. 6 depicts the random distribution of forces through 

grain-grain contacts by optically distinguishing the grains that are under greater stress.  

Two crossed polarizers are placed on both sides (one behind and one in front) of the 

beads, and would block all light from passing through the material but for a phenomenon 

called stress birefringence.8  Because of this phenomenon the way in which the beads 

themselves polarize different wavelengths of light changes as stresses are applied to 

them, making the beads that are subject to stress visible.  The random, dispersive nature 

of force distribution has interesting consequences for the behavior of a granular material 

when subject to applied forces.   

Water and other normal fluids stored in a vertical container under gravity will 

experience a pressure gradient, increasing with depth, due to the weight of the fluid at the 

top of the container pressing down onto the fluid below, in contrast to granular material.  
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In normal fluids, any differential portion of the fluid will experience a pressure 

corresponding linearly to the height and, therefore, the mass of fluid directly above it.    

Pressure in a granular material is not linearly depth dependent.  The nonlinear, random 

force chains shown in the FIG. 6 are responsible for this effect.  The downward force of 

gravity on a given grain is not transmitted from the given grain to a grain directly below 

it; there may not even be a grain directly below it.  Instead, the force exerted on the grain 

by gravity is transmitted to the other grains that are randomly in contact with the grain 

being considered and eventually to the container walls.  This property has been exploited 

for thousands of years in the hourglass.9  Pressure at the connection between the two 

halves of an hourglass, and therefore the rate of sand flow, is relatively independent of 

the height of sand in the top half (to a good approximation) and serves as a linear 

measure of time.  Many other important instantiation of this phenomenon occur in 

industry and agriculture, as in a grain silo for example.
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FIG. 6. This image depicts the distribution of stresses of the impact of the 
larger, dark ball throughout the granular medium.  Grains shown in red are 
subject to greater stress and make up the force chains that distribute 
stresses.  Stress birefringence and polarizers are used to create this 
image.10

In the late 1800’s Janssen developed a model of the distribution of stress through 

a granular material in a vertical silo-like container.  Janssen’s model, also elaborated 

upon by Lord Rayleigh, is based upon solving a differential equation relating the vertical 

and horizontal pressure at a given point in the granular medium and also upon several 

important assumptions and simplifications.6  First we assume that the medium is 

continuous, which, from a mathematical point of view, is a valid simplification if a large 

number of grains are considered and size of the system being investigated is much larger 

than an individual grain.  We also ignore local rotations of particles, ignore interactions 

with the interstitial air, and concentrate on the long-term behavior of the system.  Second, 

we assume, in the case of this model, that an applied vertical force, pv, creates a 

horizontal force, ph, such that ph = Kpv , where K is a constant of proportionality.

Now we can describe a physical system and arrive at a differential equation, 

which, when solved, will illustrate the nonlinear height dependence of pressure in 

granular materials.  As shown in the FIG. 7 below, we will consider a slice dh of a 

granular material in a roughly cylindrical container with a base of area A and a perimeter 

P.  The vertical coordinate, h, is set to zero at the top and increases toward the bottom of 

the container.  The slice experiences an upward force of A dpv (pressure increases with 

depth) and its own weight, ρgAdh, where ρ is the constant density of the slice and g is the 

acceleration of gravity.  The third and final force that the slice feels is an upward 

frictional force from the walls due to infinitesimal downward movements.  Janssen and 

Rayleigh ignored the randomness of grain-grain contact points (as well as the resulting 
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randomness of frictional forces) and assumed that frictional force on the slice followed 

the form F = µsN  where µs is the coefficient of friction for the grains with the surface of 

the container and N is the normal force that is exerted by the surface of the container, the 

horizontal force in this case.  Above, we assumed a relationship pv and ph in the container, 

and we will use it to replace ph in the frictional term.  Because we are interested in finding 

the total upward frictional force on the slice, we will need to take into account the area of 

the slice, Pdh, in contact with the walls of the container.  Thus, the frictional force on the 

slice is KµspvPdh.

FIG. 7.  Somewhat generalized silo system and parameters used in 
Janssen’s model.  We consider a slice dh of a granular material at 
equilibrium in a silo-like container.6

In equilibrium, with all three forces on the slice equal (the force of gravity 

towards the ground, the frictional force toward the top of the container, and the 

additional normal force towards the top of the container from the mass below the 

slice), we find the following relation:

Adpv + Kµs pvPdh = ρgAdh.                                 (4)

Dividing through by A and dh, we come to the differential equation

dpv

dh
= + Kµs

P

A





pv = ρg                                    (5)

h
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We then rewrite equation (5) into the form

d

dh
exp Kµs

P

A





pv





= ρgexp Kµs

P

A
h





,    (6)

and integrate to find

pv exp Kµs

P

A





 = ρgexp Kµs

P

A
h





+ C.                         (7)

The constant C can be found if we create an initial force, pv0 = Mg / A , by placing 

a mass M on top of the container over its base area.  Using these initial conditions, 

we solve for C and finally arrive at an equation for pv (h):

pv = ρg
A

PKµs

1− exp −Kµs

P

A











+ pv 0 exp −Kµs

P

A
h





.             (8)

If we use equation (8) to study the behavior of pv as h increases from zero, 

we find that, for small values of h, pv initially increases linearly with h, just as 

water would.  Quickly though, as h becomes large, we see pv saturate and 

asymptotically approach a maximum value, as shown in FIG. 8 below.  Beyond 

this point, pv is independent of h.  We see the linear regime in which the granular 

material behaves as a normal liquid would, followed by the asymptotic regime in 

which granular materials take on this characteristic, nonlinear behavior of 

constant pressure regardless of column height.  The model developed in this 

subsection is general for silos, and can be adapted for differing geometries.
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FIG. 8. This plot demonstrates the vertical pressure in a column of 
granular material as a function of height of the column.  The 
hydrostatic regime, in which pressure varies linearly with height, 
and the saturated regime, in which the pressure is independent of 
the height of the column of the granular material can clearly be 
seen.6

E. Stick-slip effect and avalanching

The stick-slip effect is a very commonly observed wherever elasticity and friction

both play a role and it also offers an interesting model for avalanching observed in 

rotating drum experiments.  In the following section, I will first qualitatively explain the 

stick-slip effect, rotating drum experiments, and critical angles.  Then I will develop a 

model used to describe both avalanching and the stick-slip effect and point out their 

similarities.  

Friction and elasticity in concert are responsible for the stick-slip phenomenon, 

which can be described with a fairly simple example shown in FIG. 9 below.  Think of a 

block at the origin, which is attached to an anchored, un-stretched spring along the x 

direction and placed on a conveyor belt that, via frictional forces, will pull the block 

against the spring in the +x-direction.  The static frictional force will be constant, and the 

force of the spring will increase as the block moves away from the origin.  At some point, 

the spring force will overcome the static frictional force and pull the block along the 
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conveyor belt, which will pull the block along against the kinetic frictional force until the 

force of the spring on the block is less than the kinetic frictional force, which will then 

begin to accelerate the block back in the direction of the motion of the belt.  We end up 

with the block oscillating in the x-direction.  This type of motion is also responsible for 

the vibrations produced by the bowing of a violin string, squeaking hinges, and 

screeching fingernails on a chalkboard.  

Seemingly far removed from a mass and a spring, granular avalanches have 

strange behaviors of their own, most notably the occurrence of two critical angels and the 

participation of only parts of the aggregate in avalanching.   These two important angles 

are θr, the angle of repose, and θm, the angle of motion. When the face of a granular pile is 

inclined at θr it is in a stable state and neither vibrations nor other perturbations will cause 

an avalanche.  Angles between θr and θm are metastable, meaning that a granular pile 

inclined to an angle in this range will remain stationary if left unperturbed but will 

avalanche if perturbed.  A sand pile with a slope that exceeds θm cannot be constructed.  

Granular materials piled up past θm or inclined past θm will necessarily avalanche.  It is

 further significant that any avalanching pile will avalanche only until it reaches θr and 

then will stop.  The increase in the angel of the sand from θr to θm without avalanching is 

analogous to the stretching of the spring without dragging the mass in the mass-spring 

system.  The values of these angles vary for different types of grains and are typically 

found experimentally.  Most measurements of sand find θr ≈ 35°  and θm ≈ 37°.  It is also

important to note that only the top layers of a pile are in motion during an avalanche, as 

shown in FIG. 10.

Fspring Fbelt

x
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FIG. 9.  Diagram of stick-slip illustration.  The belt carries the 
block to the right via frictional force, while the spring pulls to the 

left.  Adapted from Duran.6

FIG. 10. Mustard seeds induced to avalanche.  Only the top layers of the 
heap are avalanching.  Cover April 1996 Physics Today.

A rotating drum experiment is frequently used to observe these types of behavior.  

A drum with a window on one end, or some other means of observing the contents, is 

partially filled with a granular material and rotated along its axis (See FIG. 11a).  The 

angle that the surface of the aggregate makes with the surface can be observed, as well as 
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the flux of material.  This type of apparatus can be used for many different types of 

experiments, but we are only interested in stick-slip avalanches at this point.  Imagine a 

drum filled with material whose surface is initially parallel to the horizon.  As the drum 

rotates, the surface of the material will eventually reach θm, avalanche back down to θr, 

and, due to the drum’s continued rotation, eventually reach θm again and avalanche a 

second time.  Continued, steady rotation of the drum leads to a continual and periodic 

switching between static, or stick, and dynamic, or slip, states in the avalanching 

material.  The correspondence of these states to the stick and slip of a mass on a spring is 

more than qualitative.

The relevant physics and mathematics describing the stick-slip motion of a mass 

dragged across a rough surface by a spring can describe similar states of motion in 

avalanching grains in a rotating drum.  Both systems are depicted in FIG. 11.  Perhaps 

surprisingly, all of the quantities used to describe one system have analogues in the other, 

as shown in Table 1.  In fact, the same differential equation describes both systems.  

FIG. 11. Depictions of stick-slip models for (a) intermittent avalanching of 
granulars in a continuously rotating drum, and (b) for the jerky, start-stop 
motion of a mass dragged across a surface with friction by a spring.6
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Rotating Drum Variables Stick Slip Variables

θ ζ
D Ý x 

ω V

Table 1. These variables describe the relevant observables and parameters 
of the rotating drum model of avalanches and the mechanics of a mass 
pulled by a spring across a rough surface.  The same differential equation 
can describe both systems when the above substitutions are made.6

The differential equations describing the systems is based on the mechanics of the 

mass spring system, but it also describes the behavior of avalanching in a rotating drum if 

the appropriate corresponding observables and parameters are substituted. Describing the 

mass/spring system are ζ, the deformation of the spring, Ý x , the velocity of the mass, and 

K’, the spring constant.  Correspondingly, θ, the angle of the avalanching material makes 

with the horizon, D, the flux of material, and ω, the angular velocity of the drum, 

describe the avalanching system.  The differential equation for the mass/spring system is 

derived from basic mechanics of a harmonic oscillator in motion around its equilibrium, 

where the equilibrium is defined by K 'ζ = mgµd .  The mass concerned is m, g is the 

acceleration of gravity, and µd is the dynamic coefficient of friction.  We find:

m
d2ζ
dt 2 + K 'ζ = mgµd V − dζ

dt





.                                           (9)

Of course, there is also a different, static coefficient of friction, µs, which results in a stick 

slip effects.  This gives us the conditions for slipping: d2ζ dx 2( )= 0, dx dt( )= 0, and 

K 'ζ < mgµs .

A phase space diagram of the relevant variables, depicted in FIG.12 clearly shows 

the static and dynamic properties of the systems concerned with an ellipse and a flat line 
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respectively.  The elliptical portion of the diagram corresponds to the acceleration and 

deceleration, or slip, of the block being pulled by the spring or to the flowing of sand in 

the rotating drum.  The flat line at the bottom of the figure corresponds to the stick 

portion of the cycle in which the spring stretches while the block remains stationary or to 

the portion or the drums rotation in which the sand does not flow as its face angle 

increases from θr to θm.  Measurements taken of actual rotating drum experiments trace 

similar patterns in phase space, lending credence to this type of model.  

FIG. 12.  Phase space diagram of variables present in mass/spring model 
and rotating drum model. The elliptical portion of the graph corresponds 
to the intensifying and slacking of movement/sand flow, and the flat line 
at the bottom of the path corresponds to the stick portion of the cycle 
during which no avalanching or movement of the mass occur.6

F. Fluid-dynamical description

The qualitative similarity of flow of granular materials to the flow of a normal, 

Newtonian fluid suggests that the physical descriptions of fluid mechanics as we know 

them should be applicable to granular flow.  In fact, modifications have been made to 

fluid-dynamical equations in the hopes of describing granular flows in which the 

separation distance between the individual grains, s, is much less than D, the diameter of 

the grains, but non-zero.  In a much cited article, Haff proposed heuristic equations for 

granular flow based on continuous matter fields, conservation principles, and 
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macroscopic variables, which revert to grain-grain interactions only when necessary.11

Haff’s approach and a few other issues relating to a fluid mechanical description of 

granular matter are described here only qualitatively due to the complexity of the 

mathematics.

The equations stem from conservation of energy and momentum and take the 

form of a continuity equation, a momentum equation, and an energy equation.  

Conservation of mass serves as the basis for the continuity equation.  The momentum 

equation is a modification of the notoriously difficult Navier-Stokes equation, and the 

energy equation also essentially takes the hydrodynamic form.  In this granular 

description, however, the hydrodynamic coefficients like viscosity, thermal diffusivity, 

and energy absorption due to collisions are functions of the local state of the medium 

rather than constants.  The equations resulting from this approach are nonlinear and 

coupled, but can be solved analytically for some simplified static and steady state 

conditions.

Haff’s solutions have produced results, but they have several limitations.  While 

there are no adjustable parameters to contend with, physical systems of practical interest 

do not fall within the range of applications of these equations.  Still, these ideas have 

found applications in many problems, such as the sounding mechanism of booming dunes 

and squeaking sands.  In addition, they further contribute to a fundamental basis for 

understanding granular flow in a fluid mechanical sense.     

It is also useful here to define several parameters related to granular flow that will 

arise in the coming discussion of booming mechanisms.  These parameters also help to 

explain what it means for a granular material to be fluidized.  Bagnold, a prominent early 
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investigator of granular physics, starts by assuming that the grains are spherical and 

defining a linear concentration parameter, λ = D /s, where D is the average diameter, and 

s is the average separation distance between grains. Three critical values of λ can be seen 

experimentally which correspond to the three major regimes of behavior which granular 

matter can exhibit:  compacted and stationary; mobile but still intimately in contact; and 

highly energized with only occasional collisions between grains.12  When λ approaches 

∞, the grains are all in contact and the material effectively behaves as a solid.  In the case 

that λ <~ 17 the granular material behaves as non-Newtonian fluid.  That is to say, it 

flows but exhibits resistance to shear even with zero shears applied, like a thick mixture 

of cornstarch and water.13  Whenλ <~ 14 the grains are sufficiently fluidized to behave as 

a Newtonian fluid, such as water, which does not resist shearing until it is already in 

motion.  The average flow rate of the material is often referred to as u.  In the case of 

avalanching material, in which only the top layers of the material are moving, the 

difference in velocity between the layers of moving grains is denoted by ∆u.  Because of 

the discrete nature of granular materials most grains travel at slightly different velocities, 

prompting researchers to describe the average difference between the velocities of 

individual grains from the average with the variable v .

G. Size segregation

The final unusual property of granular material covered here is size segregation, a 

phenomenon, which seems to defy thermodynamic laws and defy physicists’ attempts at 

elucidation.  Observing a can of mixed nuts that has been shaken makes the effect readily 

observable.  The larger Brazil nuts will have migrated to the top of the container and the 



22

smaller peanuts and fragments will generally have moved to the bottom of the can.  In 

reference to this simple example, this phenomenon is often referred to as the “Brazil nut 

effect”.  In most situations, a large intruder particle in a monodisperse granular aggregate 

of smaller particles will move to the top of a container when the container is vibrated.   A 

number of the major attempts to describe this phenomenon, convection theories, 

percolation theories, and a hydrodynamic theory, are all discussed here, qualitatively due 

to their complexity and length constraints.  Both of the older mechanical theories and the 

new fluid dynamic theory are discussed by Trujillo and Herrmann.14

As a result of frictional forces, the particles in the center of a vibrated column of 

granular material tend to rise toward the top while the particles near the walls of the 

container tend toward the bottom, and it is thought that this type of mechanism carries 

larger intruders to the top of the container.  In this situation, it is decompaction rather 

than fluidization that we are discussing. The particles remain in contact but can change

their configuration due to energy imparted by the vibration of the container.  Coefficients 

of friction between particles and between the particles and the walls are taken to be 

different, and it is friction with the walls that prevents grains along the walls from 

moving upwards.  This leads to convection rolls at the edges of the container.  Vibrations 

move all grains, large and small, that are closer to the center of the container up towards 

the top, where the smaller grains are carried back down again by convection rolls, leaving 

the larger intruders stranded at the top of the container.

Percolation models take a slightly different tack, suggesting, instead, that it is a 

general downward movement of smaller particles that leads to the rising of larger 

intruders.  In this model, smaller grains can easily fall into voids opened beneath them by 
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periodic vibration, while the intruders can only fall into larger voids.  This filling in of 

voids beneath intruders is what effectively causes their rise.  Larger particles can also 

contribute to the creation of voids beneath themselves by encouraging formation of 

arches.  As the smaller particles fill the voids beneath the larger intruders, the large 

intruders gradually move upwards as the net downward movement of smaller grains 

displaces them.  

Trujillo and Herrmann take a kinetic, hydrodynamical approach to the problem.  It 

is first assumed that all particles are made of material of the same density, but this still 

allows different regions of the material to have different densities when considered on a 

length scale significantly larger than an individual particle.  Density variations lead to a 

difference in kinetic energy between regions of different densities; where the energy 

variations arise from the dissipative nature of the collisions between particles.   The 

intruder experiences an effective buoyant force.  The authors derive a continuum 

formulation for the granular fluid, introduce a granular temperature, and propose an 

analytic method for estimating the local temperature.  The also take into account other 

effects such as a thermal expansion, really just a change in pressure, due to changes in 

granular temperature and dependence of the phenomenon on particle size.

This phenomenon is more complex than any of the models described above, and 

has enormous practical consequences.  For instance, segregation speed depends on the 

density of the intruder in some cases, but this dependence vanishes as the interstitial air is 

removed from the container.15  In a related case, the axial rotation of a cylinder filled with 

different sized materials will cause grains of different sizes to segregate into alternating, 

transient band patterns (FIG. 13), whose characteristics depend on the speed of rotation.  
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Segregation of this type is undesirable when mixing of two differently sized materials 

must be affected, for instance in the precision manufacture of pharmaceuticals.  Without 

an understanding of the underlying physics, methods of effectively mixing powders and 

grains must be found by trial and error.  The problem itself and the theories describing it 

are far more complex and nuanced than the simple ideas introduced here, but it should be 

clear thus far that this issue is a complex one, just as granular physics as a whole is not 

well understood.

FIG. 13. Bands in white table salt and fine, black sand that spontaneously 
formed when the cylinder was continuously rotated around its axis.16

III. BOOMING AND SQEAKING SAND

Some speculations as to the cause of the acoustic emissions of booming dunes are 

over 1500 years old, and, despite modern scientific research in the last centuries, even 

ideas developed recently remain speculation.  Scientific investigations have lumped 

booming avalanches together with other types of acoustically active sands on the 

assumption that the mechanism that causes the emissions in all of these sand types is the 

same or at least related.  In an attempt to understand the underlying physics researchers 
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have extensively studied the emissions of booming dunes and squeaking sands, as well as 

the properties of the grains themselves, producing a good deal of information but little in 

the way of answers.5,17-19  Theoretical investigations are few and far between, only a 

handful exists, but currently available models are coming closer to explaining the elusive 

mechanism. 2,12 The remainder of this section describes the emissions and properties of 

acoustically active sand in more detail and reviews the two most recent mechanism 

theories.

A. Acoustic emissions of booming and squeaking sand

I pause here briefly to remind the reader of the nature of sound before discussing 

the sounds produced by booming and squeaking sands.  Sound propagates through the 

vibration of air molecules as a longitudinal pressure wave.  The vibrations are caused 

when the vibration of a physical object immersed in air causes a corresponding vibration 

in the surrounding air.  This means that, in a search for a sound producing mechanism, 

we are looking for a mechanism that causes a sustained, coherent vibration in the 

acoustically active sand.  

The actual acoustic emissions from booming and squeaking sand are distinct from 

each other in type and vary widely within these types from place to and with ambient 

conditions.  The dominant frequencies of booming avalanches range from 50-200 Hz at 

different locations at different times and are accompanied by several other frequencies at 

lower amplitudes.  Booming events also demonstrate a distinct beat or interruption 

frequency of approximately 1 Hz and generate accompanying seismic vibrations.  

Squeaking sands produce much higher and purer tones when struck or sheared that 

consist almost entirely of a single dominant frequency that ranges from 500-1500 Hz, 

depending upon location of the sand and conditions.
2
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B. Properties of Booming and Squeaking Grains

Because not all sands boom or squeak, it is assumed that some physical 

characteristics distinguish booming and squeaking sand from normal sand; thus I 

introduce several of these characteristics here.  One of the simplest analyses of sand is the 

determination of size sorting. The mean grain size of nearly all sands, booming and 

silent, is ~300 µm.1  By sieving sand to separate out the various sized grains, it is possible 

to determine the percentage of the sand that is made up of grains of a certain size.  Grains 

shapes also have varying sphericities, a measure of how far the shape deviates from a 

perfect sphere, and are variably well-rounded, meaning that the grains lack abrupt surface 

asperities.  The surface textures of grains, often as observed under a Scanning Electron 

Microscope (SEM) on the µm scale, are also characteristic.  Several SEM micrographs of 

normal, squeaking, and booming sand are shown in FIG. 14.  A final property of interest 

is the shear resistances of these sands.  

Booming and squeaking sands are comparable to one another as measured by 

some, but not all, of these characteristics, and both sometimes exhibit properties similar 

to silent sand.  Squeaking sand is well sorted, well rounded, highly spherical, smooth, and 

demonstrates a high resistance to shearing, whereas highly smooth, polished grains 

distinguish booming sand more than anything.1  With the exception of the booming back 

beach dunes on the island of Kauai in Hawaii, whose grains are calcium carbonate,19 all 

booming and squeaking sands are quartz.  Though some properties do tend to distinguish 

acoustically active sand from normal sand, none of the properties point to an obvious 

sounding mechanism for either booming or squeaking sand.
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FIG. 14. A composite diagram (from top left to right) of normal beach (top 
left), squeaking beach (top right) and booming desert (bottom) sand grains 
using low-magnification electron microscopy. Samples were collected 
from Lake Huron at Bay City, MI (top left), Lake Michigan at Ludington, 
MI (top right) and Sand Mountain, NV (bottom). The sample in the 
bottom right panel was sieved and consists of grains smaller than ~200 
µm. All micrographs were made on the 100 µm length scale. These photos 
suggest that the normal beach sand is poorly polished and irregular in 
shape, while the squeaking sand is more polished. Occasional scour marks 
appear on both types of beach sands, but not on booming sand. While 
squeaking grains are by and large rounded, booming sand contains a 
variety of erosional grain states as shown in the bottom left panel, 
including many smaller, well-polished, well-rounded grains, as seen in the 
bottom right micrograph. The top-right grain in the bottom left panel is 
highly unusual in booming sand.1

There is also a disparity between the reactions of these types of sands to moisture 

and other environmental factors.  Booming only occurs under very dry conditions and as 

little as a few drops of water in a one liter bag of booming sand can preclude booming.  

Squeaking sand performs most readily when dry, but it will still squeak weakly in some 
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cases when totally covered by water.  Both types are more active when hot, but this may 

be due to lower moisture.1

C. Major experimental results and their effects on theory

The majority of the work published on booming and squeaking sand is 

experimental in nature, probably due to the general lack of a theoretical basis for granular 

physics, and it has succeeded in eliminating several factors from consideration.  The size 

distribution of the sand, high sphereicity of the grains, piezoelectric effects, and vibrating 

air pockets are among the now discounted factors.  

The size and well-sorted nature of most squeaking sand were thought to be 

important for booming, but experimental work has shown that a particular grain size or 

particular size distribution is not sufficient condition for the onset of booming.  Haff 

separated all of the grains within certain size ranges out of a sample of booming sand and 

found that all sizes of booming grains still boomed when isolated.5 Also, Lindsay et. al 

found that booming sand from Sand Mountain in Nevada was just as sorted as nearby 

sand from silent dunes.18  It has been shown that monodisperse glass spheres do not 

boom, meaning that well-sorted-ness is not sufficient to produce booming.  This last 

example also shows that sphereicity is insufficient for producing booming. 

Another once-favored avenue of research was the pursuit of effects from the 

piezoelectric properties of quartz.   The reaction of booming sand to even small amounts 

of water, which would have interfered with the charges on the surfaces of the sand grains, 

and the fact that most booming sand is quartz initiated this curiosity.  Piezoelectric 

crystals such as quartz produce a voltage when they are strained or stressed and, 

correspondingly, change shape in response to an applied voltage.  In some experiments 

electrically grounded sand still produced acoustic emissions, failing to support this 
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theory.  Also contradicting this hypothesis are the booming beach dunes of Hawaii, 

whose sands are made of calcium carbonate. 

Vibrating air pockets left after the evaporation of water from interstitial spaces in 

booming dunes were also once thought responsible for booming.  Experiments performed 

by placing booming sand samples in a Bell jar and removing air have shown that the 

sound producing vibrations are still present without the air.  While the experiments 

discussed in this subsection have failed to discover why some sands boom and others do 

not, they have helped to direct theorists in the right directions.  

C. Bagnold’s theory of the booming mechanism

R. A. Bagnold, the great English geologist and engineer, wrote the seminal work 

on the physics of dunes.20  He also studied booming and squeaking sand to some extent 

and believed the vociferousness of both sands to result from the same mechanism.12  The 

semi-empirical theory that he developed to explain it can, given mean grain size, predict a 

single frequency of emission of a booming event.  The theory is incomplete and does not 

account for the multiple frequencies produced by booming avalanches, but it does serve 

as a good starting point.  A derivation of this theory appears in the appendix.  A more 

qualitative look at the theory comes in the following material.  

Consider a single plate of sand of some depth sliding down the face of a dune 

with a distinct slip plane between the moving and stationary sand (FIG. 15a).  Imagine 

that the avalanching grains are moving collectively with a net velocity straight downhill 

with a common, average flow velocity u, with all other velocities of individual grains 

averaging to zero.  As this coherent chunk of sand slides down the slip plane, the grains 

on the bottom of the moving chunk bounce along and collide with the stationary grains, 

rebounding and imparting momentum normal to the slip plane to the rest of the moving 
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chunk.  This results in a repulsive pressure P between the moving layer and the stationary 

layer, which is proportional to the velocity.  At the same time the moving layer 

experiences a downward force Q due to gravity.  

FIG. 15. Qualitative depiction of Bagnold’s Theory.  a) the sand 
approaches the terminal velocity Uc and b) dilates as P overwhelms Q
momentarily, after which the sand c) compacts back down to the surface 
of the slip plane under Q so that it can again gain velocity and approach 
Uc.

As shown in the appendix, Bagnold derived a terminal velocity Uc, inversely 

proportional to λ.  If the moving sand exceeds Uc for a moment, λ  must decrease from its 

starting point of 17, which makes P momentarily larger than Q.  This causes the moving 

sand to dilate higher above the surface of the dune.  The density decrease also decreases 

P, causing the expanded sand to rapidly compact back down to the surface of the dune 

under its weight. Again, λ increases and the cycle repeats as the sand crosses Uc .  The 

frequency with which the layer of moving sand alternately expands above and crashes 

onto the stationary surface of sand beneath is the frequency of the booming emission.  

Bagnold derived the following formula  to model the supposed mechanism:  

a)
b)

c)

P

Q
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f = gλmin

8D
,                                                        (10)

where f is the frequency of sound and λmin is the minimum λ for which the moving grains 

should just barely be passing over the stationary grains, in this case, λmin ≈14 . If we do 

an order of magnitude calculation with D ≈ 300µm, we find f ≈ 240Hz.  The model can 

also be applied to squeaking sand.  Impacting squeaking sand also causes shearing and 

the formation of slip planes and leads to dispersive stress.  By multiplying by a constant 

K0 in equation (10) above, Bagnold proposed to account for the fact that striking or 

compressing subjects the moving grains to an acceleration K0 times larger than g.  This 

constant varies from material to material.  

Bagnold’s model’s predicted frequency is outside the ranges of a number of 

booming sands.  The model also cannot account for the beats and other tones heard 

during booming events.  On the other hand, the emissions of squeaking sand fit this 

model’s prediction better, in that the sound they produce is closer to a single dominant 

frequency.

D. Fluid mechanical theory of the booming mechanism

 In a more recent paper, A. J. Patitsas uses fluid-dynamical methods, modified for 

use with granular media, to predict the existence of slip channels, in which mechanical 

energy is converted into sound waves to produce the booming emission of booming 

sand.2 The equations of motion can be worked out such that only the coefficients of 

friction and restitution  for the sand and the ratio of flow velocity to random velocity 

v ∆u( ) are needed to determine the behavior of the avalanching sand.  The coefficients of 

friction and restitution are particularly affected by the surface texture of the grains and 
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the existence of water on the grains, which suggests that it is the surface texture of the 

sand grains that leads to booming.

Imagine that Bagnold’s single block of sand sliding down the surface of a dune 

actually has several slip channels and a downhill velocity gradient that varies with the 

depth in the direction normal to the surface of the dune.  In other words, the sub layers at 

the top of the moving layer are moving downhill faster than the deeper layers, and 

between these layers are slip planes parallel to the dune surface of distinct width in which 

material is moving upward normal to the plane. Excitation of elastic modes of vibration 

in these slip layers causes the conversion of energy into acoustic emissions.  This theory 

predicts the location and number of slip layers, which each correspond to a different 

frequency corresponding to their width.  

An experiment performed by Shiego Miwa, a retired Japanese researcher with an 

interest in musical sand, synchronized the striking of a bed of sand with the taking of an x 

ray image of the sand.  Less dense, fluidized regions of sand show up as lighter regions in 

the x rays.  It can be seen (FIG. 16) that the silent sand responds little to striking while 

the squeaking sand exhibits slip channels (the light bands emanating from the rod in the x 

ray) during an impact from the rod.  This is encouraging news for this theory.



33

FIG. 16. X-ray images taken by Shiego Miwa of silent and squeaking 
respectively as a rod impacts them.  The slip channels are apparent in the 
acoustically active sand.2

Because this fluid mechanical theory can predict the frequencies that should be 

present in the acoustic emissions of sand for which the necessary physical properties are 

known it is possible to compare the results of this theory with experiment.  Below in FIG. 

17 and FIG. 18, two recordings of the emissions of a sample of frog sand, a relative of 

squeaking sand, are shown, as well as their corresponding Fourier transforms in FIG. 19 

and FIG. 20.  Table (2) lists, side by side, a number of the frequencies recorded in both 

events as well as the frequencies that theory predicts should be present.  Though this 

theory is incomplete, the correspondence between the expected and measured frequencies 

is encouraging.

FIG. 17.  Miwa’s first recording of Frog Sand emissions.  
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FIG. 18. Same as FIG. 17. but taken one month later 

FIG. 19.  Fourier transform of signal in FIG. 17.  60Hz peak visible.
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FIG. 20. Same as FIG. 19, except corresponding to Fig. 18.



36

Table 2. Partial listing of frequencies presenting frog sand emissions from 
both recordings in the first two columns of numbers.  The third column 
shows theoretical values.  

IV. CONCLUSION

We have seen that granular physics is a very complex but very important field of 

study, and that many questions still lack satisfactory answers, like the mystery of the 

acoustic emissions of booming dunes.  Bagnold’s model, based on the mechanics of sand 

flow and shearing does predict reasonable values for the frequencies of some dunes, but it 

cannot explain the beat frequency or why so many booming dunes’ frequencies cannot be 

predicted by it.  The more recent fluid-dynamical approach seems to be  more successful.  

It predicts the existence of multiple slip channels, which have been observed 

experimentally, and it can predict a range of frequencies, which have also been observed 
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experimentally and which agree somewhat with the theory to some extent.  More work is 

needed to further elucidate the booming mechanism and to determine what makes some 

dunes boom while others are silent.  
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Appendix: Derivation of Bagnold’s Model

Bagnold’s model of the sounding mechanism of booming sand begins with an 

experimental and theoretical study of the terminal velocity of a sheet of sand flowing 

down the face of a dune.  To measure the intergranular stresses during shearing, he 

sheared hard spheres with a density σ in a liquid of density ρ, which balanced σ to 

simulate a gravity free environment, and extrapolated the results to model the less ideal 

dynamics of a dry sand avalanche.  The Bagnold model for the sounding mechanism is 

based on a derivation of a terminal velocity for the moving front of a sand flow and an 

analysis of the stresses on a thin sheet of sand sliding down a dune face.  The details of 

the model are derived below.  In addition, they are given in Bagnold’s original paper and 

are also shown nicely in Sholtz, et al.1,12

Imagine a collection of uniform spheres of diameter D, and recall Bagnold’s 

linear concentration parameter λ = D s , where s is the mean intergranular separation.  

For close-packed, equal sized spheres, the volume fraction C is C0 = π /3 2 ≈ 0.74 .  If 

the spheres are dispersed and mean distance between adjacent centers becomes bD, 
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where b >1, s becomes larger than the s measured for close-packed spheres and can be 

related to b, as shown here

b = s

D
+1.                                                       (A.1)

This can be expressed in terms of C

C = C0

b3 = C0

λ−1 +1( )3 .                                                (A.2)

It is also important to keep in mind that flow will not occur until λ <17.

Bagnold also made three major assumptions about the flow and shear of the 

spheres.  First, the spheres are in a uniform state of shear strain, and the mean relative 

velocity between the spheres and the interstitial fluid is zero.  This can be expressed as 

∇ dU dy( ) ≈ 0, where U is the mean flow velocity in the +x direction.  Second, frictional 

loses maintain a constant kinetic energy per unit volume.  And third, the spheres also 

make small oscillations in all three directions.   

It is really shearing of adjacent layers that we need to analyze, and we begin to 

describe the geometry and motion of the spheres here.  We will be considering the 

slipping of the spheres in plane B over the spheres in plane A, as shown in FIG. A.1, in a 

series of jumps.  The layers of spheres lie in planes parallel to the x-z plane and are 

stacked upon each other in the y-axis.  The x-axis is considered to be pointing down hill.  

In this model the average differential velocity between planes is δU = kbD dU dy( ), 

where k is a constant varying between 1 2  a n d  2 3 depending up on the geometry of 

the spheres.
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FIG. A.1.  Diagram from Sholtz, et al. to accompany the derivation of 
Bagnold’s semi-empirical formula for the frequency of a booming dune.1

Now we will examine the mechanics of individual spheres and from this derive 

expressions for the shears and stresses upon the flowing layers of spheres.  First, make 

the assumption that a single sphere in layer B makes f (λ)δU /s  collisions per unit time 

with other spheres in layer A.  There are bD( )−2
 spheres in a unit area of the plane of 

layer B and each collision of a sphere will change the sphere’s momentum by 

2mδU cosβ , where m is the mass of the sphere and β is determined by the collision 

conditions.  Bringing these quantities together, it can be seen that layer B should 

experience a net pressure Py along the y-axis

Py = bD( )−2 f (λ)δU
s

2mδU cosβ,                                      (A.3)
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or

Py = rσλf (λ)D2 dU

dy







2

cosβ,                                         (A.4)

where

r = 2mk 2

σD3
.                                                       (A.5)

There is also a tangential shear stress Txy  as shown here,

Txy = Py tanβ .                                                     (A.6)

At this point, we turn to experimental work to validate and complete this theory.  

Bagnold’s experiments with beads in a “gravity free environment” found Txy  and Py

proportional to dU dy( )2
, in agreement with theory.  Experimental work also gives us 

reasonable values for the two remaining unknown values, f λ( ) and β, and tells us that 

when λ <12 the behavior of the aggregate of spheres is close to the behavior of a 

Newtonian fluid.  The relevant quantities are f λ( )≈ λ , tanβ ≈ 0.32 , and r = 0.042, 

which leads to the numerical relation below for λ <12,

P = 0.042σλ2D2 dU

dy







2

cosβ. (A.7)

Though not it is not an obvious assumption, we will assume that these relations hold 

when irregularly shaped sand grains are sheared in air.

Now we will use these relations to examine the shear stresses on a single plane of 

moving grains below the surface of the flowing layer on the face of a sand pile.  The 

applied shear stress is

Txy =σgsinα C y '( )dy'
y

0∫ ,                                             (A.8)
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where α is the angle of incline of the face of the sand pile and, again, C(y) is the 

previously found equation () for the volume fraction.  Equating the previous two 

equations, because air is not very viscous, and solving for dU dy( ),we arrive at

dU

dy
= gsinα

rsinβ






1/ 2 C y'( )dy '
y

0∫




1/ 2

λD
.                                      (A.9)

We then make the assumption that C is roughly uniform throughout the depth and take 

Bagnold’s empirical result of C = 0.6.  At the shear plane, the sand will be just 

decompacted enough to flow, meaning that λ =17.  Using this value and taking 

rsinβ = 0.076we can reduce the above expression down to

dU

dy
= 0.165 gsinα( )1/ 2 y1/ 2

D
,                                        (A.10)

which can be integrated to 

U = 2
3

0.165( ) gsinα( )1/ 2 y0
1/ 2

D
,                                       (A.11)

where y0 is the height of the flowing layer.  

With a few more assumptions about the flow, equation (above) can be further 

simplified.  Take the interfacial velocity at any shear surface to be D dU dy( ), and 

simplify the expression for pressure to

P = rβσλ2U 2 cosβ.                                               (A.12)

For slow continual shear, we can take the value λ ≈17for the local linear concentration 

and find

Uc = 1
17

P

rσ cosβ .        (A.13)
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which is the critical velocity.  Bagnold performed experiments with Bulldozed sand to 

verify that these results hold for shearing, avalanching sand.  

With these results in hand, we can apply them to booming sand.  The mass of 

moving sand exerts a compressive stress Q on the shear surface.  If the system is in 

equilibrium, increasing U above Uc requires a dilation that will decrease λ below 17, 

momentarily causing P to exceed Q, accelerating the moving layer of the sand slightly 

upward.  But as the sand dilates, P decreases rapidly and the sand collapses back down.  

The recompacted sand again exceeds the terminal velocity and dilates, repeating the 

cycle.  The oscillating force in the normal direction is mg− P , where m is the mass of the 

sand.  The minimum mean local dilatation at the shear surface at which oscillations can 

still occur is D /λmin .  The stress will only be effective when λ is near this minimum 

because at this value the planes will barely clear one another and because P varies rapidly 

with λ.  The rise and fall of the overburden through the distance D /λmin will be in almost 

free-fall, meaning that the minimum frequency of oscillations is given by

f = gλmin

8D
.                                        (A.14)
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about the history of granular physics from the introduction, and skimming through 
the abstracts and introductions gives one a nice sense of how broad this field is.  
Again, there was no mention of booming sand.

P. K. Haff, American Scientist 74 (4), 376 (1986).

Studying booming sand must be what granular physicists do on weekends for fun.  
That is the impression I got from reading this paper.  The experiments described 
here are important, basic, and creative; and there is little math or abstruse theory.  
It is written on a more popular level.

P. K. Haff, Journal of Fluid Mechanics 134 (SEP), 401 (1983).

This is a very important and heavily cited foundation for modern attempts to 
describe granular physics by way of modifying theories from fluid dynamics.  
Haff finds fluid dynamic equations of motion, which can be solved analytically 
and can be applied to granular materials.  

H. M. Jaeger and S. R. Nagel, Science 255 (5051), 1523 (1992).

This article is a good overview of many of the concerns that granular physicists 
are attempting to deal with.  

A. J. Patitsas, Journal of Fluids and Structures 17 (2), 287 (2003).

Patitsas’s paper is very dense.  The entire second page and a half of the third page 
of the paper are devoted to a table (in small type) of the variables he uses in his 
mathematics.  Still, it does summarize some of the same basic information as 
Sholtz et. al. and gives qualitative descriptions of the theory as well, which do 
shed some light on the matter.  This is the most recent, and, so far, most 
successful attempt to discover the secrets of booming dunes.  It is worth reading 
through, and some of the ideas presented about the possible presence of similar 
phenomenon on the moon and on Mars are very exciting.  

P. Sholtz, M. Bretz, and F. Nori, Contemporary Physics 38 (5), 329 (1997).
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I spent a lot of time reading and re-reading this paper.  It is the most 
comprehensive review article of research on the physics of booming dunes up to 
1997.  It covers everyone from J. J. Thompson and others in the last part of the 
19th and early twentieth centuries, through Bagnold’s theory and Miwa’s in situ x 
ray imaging of acoustically active sand.  This is a good place to start learning 
about booming sand.  

Leonardo Trujillo and Hans J. Herrmann, Physica A 330, 519 (2003).

This is a very recent paper on hydrodynamic models for size segregation.  It also 
provides a quick overview of other theories of the mechanism that causes size 
segregation.


