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LIGO and the Search for
Gravitational Waves

By Adam Libson

Abstract:
This paper discusses the Laser Interferometer Gravitational-Wave Observatory 

(LIGO).  It is hoped that with these detectors, it will be possible to detect gravitational 
waves from distant astronomical sources.  Though gravitational radiation has been 
predicted for most of the last century, it has never been directly observed.  This is the 
goal of the LIGO detectors.  There are currently two interferometer sites in the United 
States, one in Hanford, Washington, and the other in Livingston, Louisiana, with other
interferometers under construction around the world.  Each LIGO detector is a long 
baseline Michelson interferometer with Fabry-Perot resonant cavities in the arms.  This 
paper addresses the general relativity needed to talk about gravity waves, though I restrict 
myself to the linear approximation for simplicity.  I also discuss how an idealized passing 
gravity wave will affect the LIGO detectors, along with the physics of the Michelson 
interferometer with Fabry-Perot cavities.  Finally, I look at some of the noise sources in 
the interferometers, and for a few of them address possible ways around this noise.  In 
closing, this paper will discuss the current research, which, it is hoped, will aid in the 
detection of gravitational radiation. 
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Introduction and History

The Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors are 

part of a world-wide effort to directly detect gravitational radiation. This form of

radiation was first predicted by Einstein when he published his revolutionary paper on 

special relativity in 1905, and the specific laws governing gravity waves were laid out in 

Einstein’s theory of gravity and space-time which he published in 1918.  While 

gravitational waves have been predicted by these theories for almost a full century, they 

have never been directly observed.  There have been several attempts to see gravity 

waves over the last few decades, but all have failed to produce detections.  

While gravity waves have never been seen, there is little doubt in the physics 

community of their existence.  One of the reasons for this is gravitational radiation’s solid 

theoretical grounding.  Gravity waves are required by Einstein’s theory of relativity, 

which has accumulated numerous experimental confirmations since its postulation.  

Newtonian gravity does not provide for gravitational radiation and thus changes in the 

gravitational field must be transmitted at infinite speed.  This violates the theory of 

special relativity, since under that theory information can be transmitted no faster than the 

speed of light ( c ).  Since special relativity has been confirmed so thoroughly by 

experiment, it is generally accepted that gravity transmits information at the speed of 

light or less.  The method of this transmission was predicted by Einstein’s theory of 

gravitation.

The theory of general relativity, formulated by Einstein in 1918, predicted that 

changes in the gravitational field would be transmitted as waves in space-time.  Einstein’s 

theory has successfully predicted many physical phenomena, such as gravitational 
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lensing and gravitational red shifts.  Because of these and other experimental 

confirmations of general relativity, the theory is generally accepted as an accurate 

description of gravity.  Since gravitational radiation is a required element of Einstein’s 

theory, there is a very strong argument for the existence of gravity waves, even though 

they have never been directly observed.

There is also observational, though circumstantial, evidence for gravitational 

waves.  Joel Weisberg and Joseph Taylor have observed a loss of energy taking place in 

the orbit of binary pulsar 1913+16 [1].  The amount of energy lost is exactly the quantity 

that general relativity predicts will be radiated away through gravity waves.   Figure (1)

shows that the system arrives at its periastron earlier than would be expected if it were 

not radiating gravity waves.  The fact that the system arrives at the periastron early 

indicates that the orbit is decaying, and it is decaying exactly as general relativity predicts 

it should.  While this does not prove the existence of gravitational waves, it is convincing 

evidence that they are a feature of our universe.
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Figure 1:  This graph shows the orbital decay of PSR 1913+16 as observed by Taylor and Weisberg.  
The periastron times are shifted by the decay of the orbit.  The line on the graph is the general 
relativity prediction of the periastron shift time.   [Joel Weisberg, J. H. Taylor, The Relativistic Binary 
Pulsar B1913+16 (Radio Pulsars, ASP Conference Proceedings, vol. 302, 2003)]

The first devices designed to see gravitational radiation were resonant mass 

detectors, or bar detectors, and while this paper will not go into the details of their 

operation, they represent an important step in gravity wave physics. Bar detectors ring 

like a bell when a gravity wave is passing, and this vibration can be detected using piezo-

electric chips or accelerometers. Weber was the first person to build a gravity wave 

detector and his resonant mass devices started operating in 1966.  He claimed to have 

seen gravity waves with his detectors a few years later, though that claim has since been 

refuted as the result of faulty data analysis [2].  Figure (2) shows Weber at the University 

of Maryland with one of his detectors.  Several bar detectors are currently in operation 
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around the world, but resonant mass detectors have several major short-comings when 

compared to interferometric detectors.  The most significant flaw is that the detector  is 

only sensitive in a very narrow frequency band.  It can only see waves whose frequency 

is very close to the resonant frequency of the mass being used.  While no bar detector has 

had a convincing detection of gravity waves, these detectors are still valuable tools that 

continue to contribute a great deal to the science of gravity wave detection.

Figure 2:  This is a picture of Weber with one of his resonant mass detectors.  A passing gravity wave 
would cause the bar to vibrate, which would then be detected by the piezo-electric chips along the 
waist of the bar.  [Hans C. Ohanian, Remo Ruffini, Gravitation and Spacetime 2nd ed. (W. W. Norton 
and Company, New York, New York, 1994) p. 281]

Following Weber’s work, Rainer Weiss investigated the use of interferometers to 

detect gravity waves in 1972.  Using the framework that was developed by Weiss, the 

first interferometric gravity wave detector was constructed by Forward and Moss in 1972 

[3].  Ronald Drever also contributed a great deal to the practice of using interferometers 

for gravity wave detection.  The LIGO interferometers are the descendants of these early 

experiments.  LIGO consists of three interferometers: a 4 km and a 2 km interferometer 

in Hanford, Washington and a 4 km interferometer in Livingston, Louisiana [4].  The 

interferometers themselves can be seen in Figure (3). There are several reasons for 

building multiple interferometers.  By using more that one detector, LIGO can have far 
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more confidence in a detection of gravitational radiation.  Also, using more than one 

detector allows for a search for background radiation.  Finally, since LIGO is working 

with a number of detectors around the world, physicists may be able to triangulate the 

location of an event that produces gravity waves.  Eventually, LIGO hopes to participate 

in gravity wave astronomy and use gravitational radiation to learn more about the 

universe.

Figure 3:  These pictures are of the LIGO interferometers themselves.  On the left is the Hanford 
Observatory which houses a 4 km interferometer, and a 2 km interferometer.  On the right is the 
Livingston Observatory, which has a 4 km interferometer.  [http://www.ligo.caltech.edu]

General Relativity and Gravity Waves
The Linear Approximation:

One of the most important concepts in the consideration of gravitation is the 

calculation of the distance between two points in space-time.  In special relativity the 

distance between two points, ds is described by

ds2 =ηµν dxµdxν , (1) 

where 
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is the Minkowski metric of flat space-time1.  The above tensor is extremely simple partly 

because of the units used.  Throughout the discussion of general relativity, I’ll be using 

units such that 1=c .  One of Einstein’s key ideas in deriving his theory of gravitation 

was that gravity comes from curvature of space-time.  We can describe this curvature 

using the metric tensor µνg , whose elements will be functions of space and time.  This 

metric, µνg , is just like the Minkowski tensor in that it will allow us to find the distance 

between two points, except now it will be a distance in curved space-time.  The equations 

of gravitation are then concerned with finding the metric tensor for some region of space-

time.

Another problem that must be resolved before we define any equations is the 

source of the gravitational field.  Newton’s theory of gravitation has mass as the source of 

the field; however, this will not work in a relativistic theory of gravity.  We might try 

using energy density, since special relativity says that mass and energy are equivalent, 

but this will not resolve the relativistic problems.  The energy density of a system is not 

relativistically invariant; it depends on the reference frame of the observer.  A static 

energy density in some reference frame will look like some combination of energy 

density, energy flux density, and momentum flux density in another frame.  As such, the 

gravitational field measured would depend on the reference frame if energy density were 

the source.  For this reason, the source of the gravitational field must be the energy-

1 See Appendix A for a discussion of the notation used.
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momentum tensor µνT , because this source will define a relativistically correct field [5].

The tensor is defined as follows:  00T  is the energy density, 00 kk TT =  is the momentum 

density in the k  direction, and lkkl TT =  is the flux of k  momentum density in the l

direction.  This 2nd rank tensor will be the source of the gravitational field.  Each term in 

the tensor will generally be an equation of space and time.  While each term of the tensor 

will not be Lorentz invariant, this tensor may serve as the source of the gravitational 

field. 

We now have the tools we need to look for the equations governing the 

gravitational field.  Since the full non-linear field equations postulated by Einstein in his 

theory of gravitation are very complex, this paper will not address them.  We will, 

instead, use the linear approximation of Einstein’s equations, which approximate weak 

fields well and are far simpler to use.  Since the source of the gravitational field is a 

tensor of second rank, it is reasonable to assume that the field will be described by a 

tensor of second rank, which we will call hµν .  We also assume that, as for  most other 

forces, the field equation will be a second order differential equation.  Finally we require 

that the field equation be linear, and that it also be symmetric.  With these assumptions, 

we arrive at the linear approximation for the gravitational field equation2, which is

λσ
σλ

µνλ
λ

µννλµ
λ

µλν
λ

νµµνλ
λ

µν ηηκ hhhhhhT ∂∂+∂∂−∂∂−∂∂−∂∂+∂∂=− , (3) 

2 There is a major problem with the equation for the gravitational field that must be addressed, namely that 
while matter produces a field, the field produced does not act on matter.  The gravitational field as it is 
formulated in equation 3 will not change the momentum of a particle.  This can be corrected by adding a 
term that corresponds to the Energy and Momentum of the gravitational field to the Energy-Momentum 
tensor.  This term allows the field to transfer energy and momentum from the field to a particle.  This 
process however becomes rather complex quite quickly, and we will thus ignore the problem, since it does 
not play a large role in the study of gravity waves.  For more on this see Gravitation and Spacetime by 
Ohanian and Ruffini, chapter 3.
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where h  is the trace of the field tensor, and κ  is a constant that must be determined by 

experiment [6].  Each of these terms describes some specific behavior of the field, for 

example µνλ
λ h∂∂  gives the wave solution of the field tensor.

In the linear approximation, we now have

µνµνµν κη hg += (4) 

as the definition of our metric tensor.  If we define a new field variable 

hh µνµνµν η
2

1−=Φ (5) 

with the gauge condition

0=Φ∂ µν
µ (6) 

then the field becomes

µνλ
λ

µνκ Φ∂∂=− T . (7) 

The gauge condition essentially specifies a particular coordinate system for our 

equations.  We will use equation (7) as the gravitational field equation for the remainder 

of the paper.

Gravity Waves:

We will now consider the special case where T µν = 0, which corresponds to a 

region free of matter and energy, or free-space.  In this case, the field equation becomes

0=Φ∂∂ µνλ
λ . (8)

We will now look for plane wave solutions to this equation.  It can be shown that 
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ααµνµν ε xikeA=Φ (9)

solves this equation, where A  is a constant scalar, µνε  is a constant tensor, and αk  is a 

constant vector, so long as we also stipulate that 0=α
α kk , which says that the graviton

is massless.  We must also specify that 0=µ
µνε k , which means that a gravitational wave 

is a transverse wave [7]. This solution describes a plane wave with its polarization 

described by µνε  and its direction of propagation and frequency described by αk .  While 

the solution above is complex, only the real part has any physical interpretation.  Since 

we have a linear differential equation, any linear combination of solutions will also be a 

solution.

We must now consider the constant polarization tensor µνε  and determine the 

possible forms that this tensor can take.  We shall assume that the gravity wave 

propagates in the ẑ  direction.  Thus we have that 

kα =

ω
0

0

ω



















(10)

since this will give us a wave of angular frequency ω  propagating in the ẑ  direction.  

Starting with this equation, and also considering the energy and momentum carried by a 

gravitational wave, it can be shown that there are only two possible linearly independent 

choices for µνε [7].  These are 
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and
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µνε . (12)

These are the only solutions that carry energy and momentum, though there are other 

mathematical solutions to the equation.  Thus a gravitational wave can have two linear 

polarizations, and also two circular polarizations, 

µνµνµν εεε ⊗⊕ −= i (13)

and

µνµνµν εεε ⊗⊕ += i , (14)

where again, only the real part of the wave has any physical meaning.  

We will now consider the effect of a gravity wave on a test mass.  It can be shown 

that there will be no change in momentum for a free particle due to a passing gravity 

wave [8].  Thus the path that a particle takes, in the coordinate system that we have 

chosen, is not changed by gravitational radiation.  This is a very important result as it tells 

us that we will not be able to detect a gravitational wave by observing one particle only.  

We will now consider the effect of a gravity wave of polarization µνε⊕  propagating in the 

ẑ  direction on two test masses on the x-axis, separated by a distance of 0x .  From above, 

in the coordinate system that we have chosen, the momentum, and thus the paths, of the 

particles will not be changed by the passing gravity wave.  Let us now consider the 

separation of the two particles.  To do this, we need to use the metric tensor µνg .  In

Appendix B, I show that if the measured distance between the particles is )(tx , then
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( )( ) 2
0

2 cos1)( xtAtx ωκ−= . (15)

Using a Taylor series approximation, which is appropriate since we have small fields, we 

find that

( )tA
x

xtx ωκ cos
2

)( 0
0 −≈ (16)

is the distance between the particles.  The gravity wave will have a similar effect on 

particles along the y-axis, except that here 

( )tA
y

yty ωκ cos
2

)( 0
0 +≈ . (17)

Thus the distance between the test masses oscillates as the gravity wave passes.  The fact 

that the momentum of the particles did not change was a trick of the coordinate system 

we chose.  Note that when particles on the x-axis are closer together than 0x , the particles 

on the y-axis are farther apart than 0y .  The effect of a gravity wave on a circle of free 

particles can be seen in Figure (4).
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Figure 4:  This image shows the effects of a gravity wave on circles of free particles.  Note that there 
are two polarizations of the gravity wave and that they distort the circle of particles in different 
ways.  [http://sepwww.stanford.edu/public/docs/sep75/ray1/Gif/polarities.gif]

Using a more familiar coordinate system we would find that the force between 

two test masses on the x-axis is

( )tAmxF ωωκ cos
2

1 2
0−= , (18)

which is the tidal force of the gravity wave [9].  We can also discuss the amplitude of the 

gravitational wave by looking at change in distance it produces.  We say that a gravity 

wave has strain 

20

A

x

x
h

κ=∆= , (19)

which describes the strength of the wave.  

We will now briefly consider the generation of gravitational radiation.  A system 

will produce gravity waves whenever its energy-momentum tensor, µνT , is changing in 

time. Calculating the energy radiated by gravity waves is very similar to finding the light 
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radiated by a changing charge distribution.  In the electromagnetic case, using a first 

order approximation, the energy radiated depends on how the dipole moment of the 

charge distribution changes in time. However, there are no mass distributions that will 

produce a gravitational dipole.  Since all masses attract, there is only one charge of mass, 

which means that a dipole cannot exist.  There are however quadrupole mass 

distributions, and it can be shown that the energy radiated will depend on how the 

quadrupole moment changes in time.  Figure (5) shows a quadrupole distribution of mass 

that is changing in time, and is thus radiating gravitationally.  In electromagnetic theory, 

the power radiated from a changing quadrupole depends on the square of third time 

derivative of the quadrupole moment. Similarly, the power of the gravity waves radiated 

by a changing mass distribution is

••••••




= klkl QQ
dt

dE
2

845

4

π
κπ

, (20)

where klQ  is the quadrupole moment of the system [10]. It is also possible to determine 

the maximum strain at some distance R  from the source.  It turns out that 

••

= µνµν Q
Rc

G
h

4

2
(21)

is the largest field that is will be produced by a changing quadrupole [11].  Again, this is 

similar to electromagnetism, where the maximum magnitude of the electric field depends 

on the second derivative of the quadrupole moment.
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Figure 5:  This figure shows a quadrupole distribution of mass that is changing in time, and so it 
produces a gravity wave, labeled GW.  In this case, there are two mass of mass M, separated by 
distance L vibrating.  Alternatively, if the masses where instead charges Q and –Q the system would 
radiate light.  [http://nedwww.ipac.caltech.edu/level5/ESSAYS/Boughn/boughn.html]

Since we know that a changing quadrupole moment of a mass distribution is the 

source of gravitational radiation, we will now discuss what astrophysical phenomena are 

likely to produce gravity waves.  One theorized source of gravity waves is a neutron star 

binary system.  The mass distribution creates a quadrupole moment and since they are 

revolving around each other, it changes in both space and time.  Thus, we find that the

system will radiate gravity waves and lose energy.  Indirect observations of this type of 

radiation have been made using PSR 1913+16 [1].  As the system radiates energy, the 

stars will fall closer together and will orbit even faster, which causes even more energy to 

be radiated away.  This inspiral towards a collision is likely to produce a chirp of gravity 

waves as can be seen in Figures (6) and (7), and is one of the events that LIGO hopes to 

be able to detect.  At its target sensitivity, LIGO will be able to see binary neutron 

inspirals out to about 20 Mpc [12].  The predicted rate of events within 20 Mpc of earth is

about one inspiral event every 4 years [13].  There are other theorized sources of gravity 

waves, such as possible asymmetries in type II supernova, which would likely produce a 

burst of gravitational waves.  Events of this type are expected to occur at a rate of about 1 
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every 40 years in a Milky Way equivalent galaxy [14]. Theorists also predict that there 

may be a stochastic background of gravitational radiation stemming from the birth of the 

universe.  A pulsar might also radiate gravity waves if its mass distribution was not 

symmetric about the axis of its rotation.

Figure 6:  This figure shows the gravity waves that would be produced by a binary neutron star 
inspiral.  [http://spaceplace.jpl.nasa.gov/lisa_fact2.htm]

Figure 7:  This figure shows the chirp of a compact binary inspiral.  Note how the amplitude and 
frequency of the waves increases as time progresses.
[http://gravity.psu.edu/~wolf/PopularScience/Grav_GWs_BHs.html]

The Michelson Interferometer
Michelson Basics:

Since the LIGO detectors are essentially just very large Michelson interferometers 

with Fabry-Perot cavities in the arms, I shall now discuss the physics of the 
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interferometers.  A Michelson interferometer uses the wave properties of light to measure

of the changes in distance between points.  A basic Michelson interferometer only has 5 

parts as can be seen in Fig (8).  These are, a laser, a 50-50 beam splitter, two mirrors, and 

a photo-detector.  The laser first hits the beam splitter where it is divided into two beams 

at right angles to each other.  The beams then travel some length L before they reflect off 

the mirrors and go back to the beam splitter, where they re-combine and go to the photo-

detector and back towards the laser.  

Figure 8:  This image is of a basic Michelson Interferometer.  The source is for our purposes a laser.  
In LIGO, L is about 4 km.  [http://scienceworld.wolfram.com/physics/]

When the laser light hits the beam splitter it is propagating in the x̂ direction and, 

the equation for the electric field of the light is

( )zeEE txki ˆ0
ω−⋅=

r
. (22)

After hitting the beam splitter, though, there will be two beams, one in the ŷ  direction 

and one in the x̂  direction.  The equations will then be

( )ze
E

E txki
x

x ˆ
2
0 ω−⋅=

r
(23)
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for the beam continuing in the x̂  direction, and

( )
ze

E
E

tyki
y

y ˆ
2
0 ω−⋅−=

r
(24)

for the beam reflected into the ŷ  direction.  The light is then reflected off the mirrors and 

comes back to the beam splitter, which works the same way as before, except in the other 

direction.  Thus we find that after hitting the beam splitter again, the electric field of the 

light propagating in the direction of the photo-detector is

( )( ) ( )( )( )yyxx
LkiLkiti eeeEE

22
0det 2

1 ⋅⋅− −= ω . (25)

For our purposes, we will assume that λ
π2== yx kk .  Using some algebraic tricks, it can 

be shown that the equation above simplifies to

( )


 −= yx
ti LLeEE λ

πω 4
sin0det . (26)

We know that the power being carried by the light is proportional to the electric field 

squared, so we can say that 

( )


 −= yxlaser LLPP λ
π4

sin 2
det (27)

is the power of the light at the photo-detector.  Thus we see that the power of the light at 

the photo-detector depends only on the value of ( )yx LL −λ
π4

, and if its value changes, so 

will the power of the light that reaches the photo-detector.  This value is actually the 

phase shift of the light between the two arms and in general, I’ll represent it as ∆Φ .  

Thus for a Michelson interferometer

( )∆Φ= 2
det sinlaserPP . (28)
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Detecting Gravity Waves:

I will now discuss how a Michelson interferometer can be used as a detector of 

gravitational waves.  Note that if LLL yx ==  we get no light at the anti-symmetric port 

of the interferometer3.  Now assume that a gravity wave propagates in the ẑ  direction 

with amplitude A , polarization tensor µνε ⊕ , and frequency ω .  From above we found that 

such a wave will have strain

2

A
h

κ= (29)

that describes the changes in distances as a result of the wave.  I will also assume that the 

period of the gravity wave is much greater than the time the laser light will be in the 

arms.  With these assumptions we may now proceed to consider how a gravity wave will 

affect the interferometer.  Figure (9) shows an interferometer with a gravity wave of the 

polarization and propagation direction described above.  

3 The anti-symmetric port of the detector is where the photo-detector is in Figure (8).
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Figure 9: This image shows a gravity wave incident on the interferometer in an ideal orientation.  
The image also shows the interferometer with the Fabry-Perot cavities.  [Barry Barish, LIGO and the 
Detection of Gravitational Waves (LIGO Document LIGO-G000306-00-M, 2000)]

We already saw that the distances between two masses on either the x-axis or the 

y-axis are

( )tA
x

xtx ωκ cos
2

)( 0
0 −≈ (30)

( )tA
y

yty ωκ cos
2

)( 0
0 +≈ . (31)

In LIGO, the mirrors are mounted as pendulums so that they behave as free masses and 

can thus be easily moved by the passing gravity wave.  Thus when the gravity wave 

described above is incident on the interferometer, the lengths of the arms will change so 

that 

( )tA
L

LL x
xx ωκ cos

2
0

0 −= (32)

and

( )tA
L

LL y
yy ωκ cos

2
0

0 += . (33)
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Substituting these equations for the lengths of the arms in equation (27), we see that

( ) ( ) 

















+−


 −= tA
L

LtA
L

LPP y
y

x
xlaser ωκωκλ

π
cos

2
cos

2

4
sin 0

0
0

0
2

det . (34)

Since we have that LLL yx == 00 , this simplifies to

( )


= tALPP laser ωκλ
π

cos
4

sin 2
det , (35)

which means that the power that reaches the photo-detector will oscillate depending on 

the strain and the frequency of the gravity wave.  Thus we can use a Michelson 

interferometer to detect a gravitational wave, and information about the wave will be 

encoded in the power of the light detected at the anti-symmetric port.  

Another way to do this same problem would have been to consider the phase shift 

∆Φ  that would result from the gravity wave passing through.  To find the difference in 

phase between the two beams of light, simply consider the total difference in time that the 

beams were in each arm.  The light in one arm spends 
c

L∆2
  longer than normal in the 

arm, and the light in the other arm spends 
c

L∆2
 shorter than normal.  Thus the total 

difference in time traveled is 
c

L∆4
.  Since tc∆=∆Φ λ

π2
 we get that λ

π L∆=∆Φ 8
 and 

since ( )tA

L

L
th ωκ

cos
2

)( =∆= , we find that 

( )tAL ωκλ
π

cos
4=∆Φ . (36)

From this we can now say that 

( )


= tALPP laser ωκλ
π

cos
4

sin 2
det , (37)
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which is the same answer as the one previously derived.

The LIGO Interferometers:

A simple Michelson interferometer could probably detect a gravity wave if it were 

strong enough, or if the interferometer were large enough.  When considering the noise 

though, a simple Michelson interferometer, built to a practical scale, would be unable to 

see gravity waves with realistic strains. The Laser Interferometer Space Antenna [LISA] 

will be a simple Michelson interferometer with arm lengths of about 5,000,000 km (more 

on this later). Since a simple interferometer of a size that can be constructed on earth 

would probably not be able to see gravity waves, the designers of the LIGO 

interferometers made changes to the simple Michelson design in order to maximize the 

sensitivity to gravitational radiation.  There are several differences between the LIGO 

interferometers and a simple Michelson interferometer, but the two greatest are the 

addition of a power recycling mirror between the laser and the beam splitter, and the 

addition of input mirrors in each arm, creating Fabry-Perot resonant cavities.  These input 

mirrors do not reflect light entering the arms, but they do reflect much of the light that is 

already in the interferometer arms.  A simplified schematic of the LIGO interferometers 

can be seen in Figure (10).  
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Figure 10: This image shows the interferometer setup of LIGO’s 4 km detectors.  The two main 
differences from the simple Michelson interferometer are the addition of a recycling mirror, and the 
addition of the two input mirrors, which create Fabry-Perot Cavities in the arms of the 
interferometer.  [http://www.spie.org/web/oer/december/dec99/ligo.html]

We will now consider the effects of the Fabry-Perot resonant cavities on the 

interferometer and, more importantly, their effect on the interferometer’s ability to detect 

a gravitational wave.  Since these cavities are resonant structures, the light will create a 

standing wave in the cavity and the length of each cavity must be very near to
2

λm
, 

where m  is an integer, or the light will destructively interfere with itself in the cavity.

The addition of Fabry-Perot cavities in the arms of the interferometers increases the 

number of trips back and forth the photons in each arm take.  We can characterize the 

cavity by the number of trips that the average photon will take in each arm.  In the LIGO 

interferometers, the average photon takes about 100 trips up and down each arm [12].

Thus the Fabry-Perot cavities have effectively increased the length of the interferometer 

arms by a factor of 100.  With this in mind we will now look at the phase shift of the light 

in a LIGO interferometer due to a passing gravity wave.
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As before, assume a plane wave propagating in the ẑ  direction with the 

polarization such that the response of the detector is maximized.  I will again assume that 

the period of the gravity wave is much greater than the time that an average photon 

spends in the arms.  As before, the length of each arm will change by some length L∆
and the time a photon takes to go from the input mirror, to the end mirror, and back to the 

input mirror will change by 
c

L∆2
.  However, the photon now makes n  such trips and so

c

Ln
t

∆=∆ 2
(38)

is the total change in the time it spends in the cavity.  Thus, from the discussion earlier, 

this will lead to 

( )tAnL ωκλ
π

cos
4=∆Φ . (39)

This means that the phase shift of the light due to the gravity wave is increased by a 

factor of n , greatly increasing the sensitivity of the interferometer.  At the same time, the 

length of the arms needed to attain a certain sensitivity is reduced.

The other change evident in Figure (10) is the addition of a power recycling 

mirror.  This mirror is similar to the input mirrors in that it allows nearly all the light to 

enter the interferometer, but it reflects most of the light exiting the interferometer. By 

using a power recycling mirror, the laser power in the interferometer can be vastly 

increased.  Changing the power of the light in the interferometer has a large effect on the 

noise; the power recycling mirror reduces the shot noise though it does lead to greater 

radiation pressure noise.
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Sources of Noise in LIGO

Noise is one of the plagues facing the LIGO experiment, and much of the current 

research is devoted to lowering the noise in the interferometers.  One of the goals of the 

LIGO interferometers is to be able to detect a gravity wave with strain of about 2210−  at 

150 Hz [12]. This means that even though the arms of the interferometer are 4 km long, 

the mirrors will only move about 1910−  meters.  LIGO must then be able to know the 

positions of the mirrors to within this order of magnitude, and be able to detect 

perturbations of this size.  This means that the noise in the interferometer must be kept at 

extremely low levels.  Figure (11) shows the predicted noise curves for an advanced 

LIGO interferometer and from it one can see the contributions from various different 

noise sources.
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Figure 11:  This figure shows the predicted noise curves for an advanced LIGO interferometer.  The 
Noise is similar in the first generation LIGO interferometers, only greater by about an order of
magnitude.   LIGO will be most sensitive from about 50 Hz to about 1000 Hz.  [Shanti Rao, Thermal 
Noise Sources Relevant to Interferometric Gravitational Wave Detection (LIGO Document LIGO-
G010016-00-R, 2001)] 

Shot Noise:

Shot noise is one of the major sources of noise in the LIGO interferometers, and is 

in fact the limiting noise source for higher frequency ranges [15].  Shot noise comes from

the inherent uncertainty in the phase of the light, and since LIGO is in effect measuring 

the phase shift of the light, an uncertainty in the phase will produce uncertainty in the

phase shift.  In Appendix C, I show that if we have a laser beam with an average of N

photons arriving per second, then the uncertainty in the number of photons that will 

arrive in any given second is N .  We will now use Heisenberg’s uncertainty principle 

to examine the uncertainty that results in the phase shift.  First note that t∆=∆Φ ω  and 
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that NE ∆=∆ ωh  which we can then insert into Heisenberg’s uncertainty relationship, 

which says that 
2

h≥∆∆ tE  to get that 

2

1≥∆Φ∆N . (40)

We can also use the energy of the photon to say that ωh
nI

N =∆ , where I  is the 

intensity of the laser beam when it hits the beam splitter.  Since we already have an 

equation that relates ∆Φ to the change in position of one mirror, x∆ , we can now say

2

14 ≥∆ ωλ
π

h
nI

x . (41)

Solving for x∆  we get

ωnI

c
x

h
4

≥∆ . (42)

Because the uncertainty in the position of one mirror is uncorrelated to the uncertainty in

the position of another mirror, the uncertainties add in quadrature and so
L

x
h

∆=∆ 2
, 

which means that

ωnIL

c
h

h
2

≥∆ . (43)

This result is very important as it says that the uncertainty in the strain decreases 

as the intensity of the light increases.  The reason for this may be described in the 

following way.  Each photon makes a measurement of the mirrors’ positions, and the 

more measurements taken, i.e. the more photons bounced off the mirrors, the lower the 

uncertainty in the actual measurement.  Thus a greater intensity of light hitting the 
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mirrors will lead to a lower uncertainty in the phase of the light, and lower uncertainty in 

the strain.  Another important aspect of shot noise is the fact that it is independent of the 

frequency at which measurements are taken.  Thus for some laser intensity, the shot noise 

sets a lower limit on how much the noise can be decreased.  Figure (12) shows the optical 

readout noise, which is the noise from both radiation pressure noise and shot noise.

Figure 12:  This is plot shows the noise in the strain as a function of frequency.  The calculation of 
this noise was done for a simple Michelson interferometer with 500 km arms, 5 watts of laser power, 
and 10 kg mirrors.  [Peter R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors
(World Scientific Publishing Company, Singapore, 1994)  p. 79]

Radiation Pressure Noise:

One of the many important aspects of quantum mechanics that comes into play in 

the interferometers is the fact that photons have momentum, and may impart a force on 

an object.  Thus when they are reflected by a mirror, the mirror feels some force due to 
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the reflected photons.  Since there is an uncertainty in the number of photons striking the 

mirror for some period of time, there is also an uncertainty in the force on the mirror.  We 

have that the force F  imparted by a beam of light reflecting normally off of a surface is

c

I
F = (44)

and so the uncertainty in this force for one of the LIGO mirrors is

c

I
F

∆=∆ . (45)

It can be shown that ωhnII =∆ .  The intensity at each mirror, however, is half of the 

intensity at the beam splitter so thus we get that 

ωh
2

1 nI

c
F =∆ . (46)

This leads to some uncertainty in the position of the mirror, x∆ .  Using the properties of 

a harmonic oscillator, it can be shown that
mf

F
x

2)2( π
∆≥∆ , where m  is the mass of the 

mirror and f  is the frequency at which the mirror is oscillating4.  From this we get that

ωπ h
2)2(

1
2

nI

mfc
x ≥∆ . (47)

Using this equation to find the uncertainty in the strain, we get

ωπ h
22

1
22

nI

mfLc
h ≥∆ . (48)

As before, it is important to note that increasing the intensity of the light has an effect on 

the noise; in this case, increasing the intensity actually increases the noise.  Another 

important point about radiation pressure noise is the fact that it depends on the frequency 

4 Remember that the mirror is suspended as a pendulum and is thus a harmonic oscillator.
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at which one is measuring.  This effect can be seen in the plot of radiation pressure noise 

in Figure (12).

The Standard Quantum Limit:

The fact that radiation pressure noise increases with the intensity of the light and 

shot noise decreases with the intensity of the light leads to a fundamental limit on how 

accurately one can measure the position of the mirror with photons.  Since the radiation 

pressure noise and the shot noise are uncorrelated5, they add in quadrature. Thus we find 

that 22
shotrad hhh ∆+∆=∆ , and so the minimum h∆  is when shotrad hh ∆=∆ .  Now we can 

simply set up this equation and solve for I  so that these two uncertainties will be equal.  

Doing this we find that noise will be a minimum when

ω
π

n

mfc
I

222

2= . (49)

Calculating the total optical read-out noise using this laser intensity gives

mLfmLf
h

hh
ππ

1

2

1
4/3

≈=∆ . (50)

This is a very important result because it indicates that this is the limit of measurement 

due to uncorrelated radiation pressure noise and shot noise, and it does not depend on

anything other than the frequency at which the measurement is made, the length of the 

interferometer, and the mass of the mirrors.  LIGO’s mirrors are currently 10 kg masses, 

though new mirrors made of sapphire may have a mass of about 40 kg.

Strange as it may seem, there are ways around the standard quantum limit.  The 

reason for this lies in the equation

5 These two sources of noise are uncorrelated because shot noise comes from the uncertainty in the phase of 
the light and radiation pressure noise comes from the uncertainty in the intensity of the light. 
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22
shotrad hhh ∆+∆=∆ , (51)

which is not an accurate statement if the radiation pressure noise and the shot noise are

correlated. One way of correlating the noise from radiation pressure with the shot noise

is to use what are called squeezed states of light.  We have already seen that 
2

1≥∆Φ∆N .  

What happens with squeezed states is that one can reduce ∆Φ  while increasing N∆ , or 

vice versa, and in doing so, create a correlation between the shot noise and the radiation 

pressure noise.  To create this correlation, one would inject squeezed light into the anti-

symmetric port of the interferometer.  By doing this, it is possible to achieve 

measurements more accurate better than the standard quantum limit [16].  In the case 

where radiation pressure noise and shot noise are correlated, the total noise will be

),cov(222 ∆Φ∆+∆+∆=∆ Nhhh shotrad , (52)

where ),cov( ∆Φ∆N  is a measure of the correlation between N∆  and ∆Φ .  Another way 

around the standard quantum limit is by using quantum non-demolition techniques.  

Instead of measuring the position of the mirrors, one could measure their momentum.  

Since the momentum operator commutes with itself at different times, it is possible to 

observe the momentum of the mirrors without  influencing that momentum [16].  For this 

reason, measuring the momentum of the mirrors is a way in which a future interferometer 

could beat the standard quantum limit.

Thermal Noise:

The thermal noise for the LIGO interferometers is one of the larger noise sources 

at low frequencies.  Thermal noise in general is perhaps best explained by looking at the 

source of the noise, which is the random chaotic motion of molecules.  The equi-partition 
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theorem says that every normal mode of oscillation will be excited with energy 
2

TkB due 

to thermal energy.  However, while this tells us the total energy in each mode, it does not 

specify how the noise will be distributed over different frequencies.

What I will now present is know as the fluctuation-dissipation theorem, and since 

it is a rather complex idea, I will only touch on the basics of the theorem.  The idea is that 

one can describe the noise in a system based on the rate of loss of energy from the 

system.  We start with the basic idea that we may write the equation of motion of a 

harmonic oscillator as

vfZF )(= , (53)

where F  is the external force on the oscillator, v  is the velocity, and Z  is the impedance 

[17].  The impedance of an oscillator is generally complex and is defined by the equation 

above.  All of these are considered as functions of the frequency at which the oscillator 

moves.  It can then be show that 

))(Re()(
22

2 fY
f

kT
fxth π= , (54)

where )()( 1 fZfY −=  and is called the admittance [17].  What this tells us is that if we 

can determine the losses in the system, due to the impedance, we can also find the 

thermal noise of that system.  In LIGO there are many sources of this loss, including

friction in the mounting of the pendulum and stretching of the wires supporting the 

mirrors.  However, using the above formalism, we can accurately characterize the 

thermal noise.
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Another way in which to look at the thermal noise is by using the quality factor Q

of the oscillator.  The quality factor measures the size of dissipation around the resonant 

frequency of the oscillator and is defined by 

f

f
Q ∆≡ 0 , (55)

where 0f  is the resonant frequency and f∆  is the full width at half the maximum of the 

power of the noise.  A high quality factor means that most of the noise will be at the 

resonant frequency, which in turn says that thermal noise from that mode of oscillation 

will not contribute much noise at other frequencies.  A pendulum works out to be a 

remarkably high quality oscillator because the principle restoring force, gravity, is 

lossless.  While the internal friction in the wires suspending the mirrors will cause some 

noise, it is much less than if the wires were responsible for the restoring force [18].

Figure (13) shows the strain noise due to the pendulum suspension of mirrors in an 

interferometer.  There are several other sources of thermal noise, such as the internal 

modes of the mirrors themselves, but this noise can be analyzed using the techniques 

described above.
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Figure 13:  This figure shows the noise in an interferometer due to the thermal noise of the pendulum 
suspension of the mirrors.  The pendulum has resonant frequency  1 Hz, mass 1 kg, and is suspended 
by four tungsten wires of diameter .12 mm.   Here the interferometer has L=4 km. [Peter R. Saulson, 
Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific Publishing Company, 
Singapore, 1994) p. 123]

Future Work and Conclusion

For all the physics taking place inside the detectors, each one is a very low noise 

Michelson interferometer.  In fact, much of the research currently being done has to do 

with lowering the noise in the detectors even further. The work with squeezed light is 

one example of current research that is aimed at reducing the noise in LIGO.  Currently, 

LIGO is sensitive to gravity waves with strains of about 2110−  which means that the 

experiment is very close to reaching the design sensitivity [19].  The sensitivities of all 

the LIGO interferometers, along with the target sensitivities can be seen in Figure (14).
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Once the detectors reach their target sensitivities, it is expected that they will be upgraded 

to allow for strain sensitivities better than 2310− .  This would allow the detectors to see 

binary neutron star inspirals out to a distance of about 350 Mpc.  The predicted rate of 

binary inspiral events out to this distance is about 4 events per day [13].

Figure 14:  This image shows the best strain sensitivities of the three LIGO interferometers during 
the S3 run.  The run was from 31 October 2003 through 9 January 2004.  [LIGO-G040023-00-E, 
2004]

Another area that has quite a lot of active research is data analysis.  This deals 

with analyzing the signal that the detector outputs, and determining if a gravity wave is 

present, and if so, what caused it.  There are four data analysis groups, Inspiral, Burst, 

Pulsar, and Stochastic Background, since these are the predicted principle sources of 

gravitational radiation.  There is also research being done by theorists to predict the 
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waveform of a gravity wave from a particular source.  Another important area of research 

is LISA, which will search for gravity waves at frequencies lower than LIGO’s sensitivity 

curve allows.  Figure (15) shows the different frequency ranges in which LIGO and LISA 

will operate. Because LIGO and LISA are sensitive in different frequency ranges, they 

will be searching for types of events, the same way that optical astronomers and x-ray 

astronomers look for different events.

Figure 15:  This figure shows the frequencies at which LIGO and LISA will operate.  The left axis is 
actually the strain, while the curves show the noise in each device.  The planes show frequency and 
amplitude of expected signals.  [ http://www.srl.caltech.edu/lisa/graphics/05.LIGO.LISA.jp ]

The importance of gravity wave detection is not just to serve as a proof of 

Einstein’s theory of general relativity.  Gravity wave astronomy is likely to allow people 

to observe events we could not otherwise see.  For example, with a system of four or 

more detectors separated by a couple thousand kilometers, physicists could triangulate 

the location of a source of gravity waves.  When paired with optical astronomy, this 

might allow physicists to study events using both light and gravity waves, providing a 

more complete observation.  As can be seen in Figure (16), the LIGO detectors have been 

situated at quite some distance from one another for just this reason.  Also, the LIGO 

interferometers function in concert with a growing group of others around the world, 
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which may further provide the ability to localize sources of gravitational radiation.  The 

first detection of gravity waves will certainly be a milestone, but physicists also hope to 

use gravity waves to study the objects or events that produced them.  It may become 

possible to observe what goes on in the core of a type II super-nova using gravity waves. 

Neutron star binary inspiral events might also serve as a standard candle, which would 

aid in determining the Hubble constant [20].  Finally, information from a stochastic 

gravity wave background could give clues as to the very first moments of the universe.  

For all of these reasons, gravity wave astronomy is likely to become a very important 

field.

Figure 16:  This image shows the locations of the LIGO interferometers, and the distance between 
them.  The detectors were deliberately place a large distance from one another to aid in localizing the 
source of gravitational waves detected. [Barry Barish, LIGO and the Detection of Gravitational Waves
(LIGO Document LIGO-G000306-00-M, 2000)]

Conclusion:

The search for gravitational radiation is currently an extremely exciting area of 

physics research, and while there is good evidence for the existence of gravity waves they 

have not been directly observed.  The LIGO experiment has the ambitious goals of 

detecting gravitational radiation and using incoming signals to examine the universe 
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through gravity wave astronomy.  While the detectors themselves are very complex 

devices, at their hearts they are simply Michelson interferometers.  Similarly, though the 

noise curve for LIGO is complicated, many of the individual noise sources are 

explainable using relatively simple physics.  Gravity waves, when detected, are likely to 

open up a new way of looking at the universe, and future observations may reveal objects 

and phenomena that have never even been considered before.
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Appendix A: Notation

This section discusses the notation used in this paper.  First consider a vector in 

spacetime.  The components will be represented using superscripts so tx =0  and xx =1

and so on.  Here the symbol µA  will represent a vector in spacetime.  This paper also 

uses the Einstein summation convention.  Whenever a repeated index appears, this 

translates as a sum over all time and space.  In this paper

∑
=

=
3

0α
α

α
α

α ABAB .          (56)

In taking partial derivatives, the following notation will apply,

f
x

f
αα ∂=∂

∂
.    (57)

Finally, a dot such as 
•
f  will indicate a derivative with respect to proper-time.

Appendix B: Derivation of Changes in Distance Caused 
by a Gravitational Wave 

The distance between two points when a gravity wave passes is of great 

importance.  For this derivation, I’ll be looking at a gravity wave with

ααµνµν ε xikeA=Φ ,         (58)

where 
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.  Thus for this case, we have
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Since we have hh µνµνµν η
2

1−=Φ , we can also say that

Φ−Φ= µνµνµν η
2

1
h ,           (60)

where Φ  is the trace of µνΦ .  In this case however, 0=Φ , and so µνµν Φ=h .  We 

know that µνµνµν κη hg +=  which means that for this gravity wave we have
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Now I’ll examine two objects on the x-axis in the 0=z  plane.  Assuming they had an 

initial separation of 0x  the metric tensor tells us that their separation will be

2
0

2
0

2
011

2 ))cos(1()1()( xtAxAexgtx ti ωκκ ω −=−=−= .          (62)

Appendix C: Statistics

Photon arrival times obey Poisson statistics, which means that if on average µ

photons arrive per unit length of time, then the probability of r  photons arriving in that 

length of time is described by the probability distribution

!
)(

r

e
rP

r µµ −
= .      (63)

I’ll use the standard deviation σ as the uncertainty in a particular measurement.  Using 

the equation 
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222 rr −=σ (64)

where 

∑∞
=

=
0

)()()(
r

rPrfrf          (65)

is the expectation value for )(rf , we find that for the Poisson distribution, 

µσ =2 . (66)

Thus for an average of µ  photons arriving each second, we will have an uncertainty of 

µσ = .
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