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A feedback controlled system is a system that compares its own output to 
a desired value and automatically takes corrective action.  This paper will 
examine linear feedback systems, including the basics of automobile 
cruise control, operational amplifiers, and PID controllers.  System 
performance can be improved by the use of feedback, especially when 
faced with external disturbances.  To realize these gains, however, the 
feedback system must be properly designed.  Design tools such as Nyquist 
stability criteria, Bode plots, and pole-zero placement will be examined.
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I. INTRODUCTION

Over the last hundred years, the uses of feedback control have grown at an 

astounding rate.  A feedback controlled system is a system that compares its output to a

desired value, and then automatically takes “corrective action.” Many modern 

conveniences, including automobile cruise control systems and thermostats, rely heavily 

on feedback.  While its uses continue to grow, the utility of feedback control was first 

shown more than two thousand years ago.  In ancient Alexandria, feedback was used to 

help increase the accuracy of water clocks.  Despite its success, feedback was relegated to 

a handful of specific applications until the growth of steam and combustion engines.  

Centrifugal governors on steam engines first shed the spotlight on feedback control, but it 

remained an engineering art.  The demand for long distance telephone communication 

spurred development of the mathematical formalism of feedback, and since then the field 

has exploded.  It is now a crucial part of the design of electronics and amplifiers. More 

exotic applications include stabilizing aircraft, keeping satellites in orbit, and designing 

robots.  Feedback has even crept into other sciences: psychologists have examined the 

role of feedback in human behavior and learning, and biologists are studying chemical 

feedback pathways in the human body.  Another form of feedback is also used by 

corporations looking to maximize customer satisfaction.  The tremendous growth of the 

field of feedback control can be attributed to the important gains it brings to a vast array 

of applications.

In examining the gains and pitfalls of feedback systems, I’ll first examine a basic 

cruise control system to demonstrate the power of feedback.  From this example, I’ll 

build up the general formalism of linear feedback control and flesh out some of the 

specific benefits.  After clarifying the basic idea of feedback, the history of its use by 
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humans will be examined in more depth.  This will segue into the development of the 

operational amplifier and the formalism of the concept of stability.  Here the control 

system engineering tools developed by Harry Nyquist and Hendrik Bode will be 

discussed.  Next, I’ll demonstrate the power of transfer functions and pole-zero 

placement in system design and analysis.  I’ll conclude with a look at proportional-

integral-derivative controllers and a summary of feedback control methods.

II. SIMPLIFIED CRUISE CONTROL APPLICATION

One example of linear feedback control is a simplified model of a car cruise 

control system.  The purpose of this example is to show the improvements that feedback 

can bring to a system, even in the presence of external factors.  Before I get into the 

specifics of cruise control, there is an important control system design tool that helps 

visualize system dynamics, the block diagram.  A block diagram consists of several 

blocks and arrows connecting them: the blocks represent a process or action and the 

arrows represent information or energy flow.  In control system applications, the process 

over which control is desired in known as the plant.  A collection of other processes are 

then connected to the plant in such a way that the output is adjusted towards a specific 

value.  I’ll call the plant in this case P, and it will take in an input u and produce an 

output y.  The diagram for process P is shown in Fig. (1). 

FIG. 1.  Process P takes an input u and produces an output y.

Mathematically, this process can be represented by the equation:

Puy = . (1)
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In a car, there are several interconnected components that determine system behavior.  

The first is the angle of the accelerator pedal.  This sends a signal to a small motor that 

controls the fuel intake of the engine.  The motor, often called the throttle, adjusts the 

opening of a valve in the engine that restricts fuel intake.  The opening is described by the 

throttle angle; the larger the angle the more fuel is available in the engine.  So, the output 

of the throttle changes the amount of fuel flowing into the engine.  A block diagram of 

this part of the car is shown in Fig. (2). 

FIG. 2.  Input to the system is the accelerator angle.  The throttle takes 
in this signal and adjusts the throttle angle accordingly.  The changing 
throttle angle changes the output of the engine.

The output of the engine is then transferred to the roadway by the wheels.  To determine 

the actual speed of the car, a couple of other factors must then be examined.  Newton’s 

Laws form the basis for any such development, most importantly the second law:

amFnet

vv
= . (2)

For a simplified model of a car on level ground, the engine is producing a force in the 

forward direction while the motion of the car produces some drag in the opposite 

direction.  Because of this, I only need to consider the vector components in the direction 

of travel.  The force of the engine will be Fe, while the drag Fd will be treated as linearly 

dependent on the speed of the car:

bvFd = (3)

mabvFF enet =−= (4)
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where b is the drag coefficient and m is the mass of the car.  When these forces balance 

out and there is no net acceleration, the car is said to be in equilibrium.  The flat ground 

equilibrium velocity r is then given by:

b
Fr e= . (5)

If the car begins ascending a hill, without a change in engine output its speed will drop.  

Some of the engine’s work now has to go into increasing potential energy, while the drag 

forces will initially dissipate energy at the same rate.  The speed will drop until a new 

equilibrium is reached.  The dynamics of how this occurs are not important to this 

development; I’ll only look at the steady state velocity. Assuming that the incline is a 

relatively small angle, the new equilibrium will be governed by:

0==−−= mamgbvFF enet θ (6)

b

mgF
v e θ−= . (7)

Eq. (7) forms the model of the equilibrium velocity of the car based on engine output.  

For any road grade, the model shows how the car will react.  Based on this model, the 

behavior of the car on road can be represented by Fig. (3). 

FIG. 3.  The force put out by the engine, Fe, is modified by the effects 
of gravity when traveling on an incline θ.  This force is then divided by 
the coefficient of drag, b, to get the equilibrium velocity of the system.
See Appendix A for block meaning.

Putting Fig. (3) together with Fig. (2), the total behavior of the system could be seen.  

However, the actual cruise control portion of the system has not yet been introduced.  
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When traveling on a flat stretch of road, if the driver presses the “set” button on the cruise 

control, the current speed is saved into an onboard computer.  This speed, r, given by 

Equation (5), is the desired speed of the system.  The onboard computer then compares 

the desired speed and the actual speed, and adjusts the throttle accordingly.  This takes 

the place of the accelerator pedal input into the system, the driver’s foot is freed of its 

responsibility and the computer now has control.  To simplify the diagram, the computer 

and throttle blocks will be combined and labeled controller.  Fig. (4) shows the diagram 

with a cruise control system included.

FIG. 4.  Block diagram for a car with cruise control engaged traveling 
on a road with grade θ.  See Appendix A for block meaning.

In this example, the relationship between throttle angle γ and speed will be treated 

as linear in the region of operation.  Using an engine constant E to relate throttle angle 

and output force yields γEFe = .  The feedback loop can now be constructed, where the 

controller will produce a signal )( vrC −=γ , where C is the controller constant. The 

equilibrium velocity of the system, v, is now given by Eq. (8). 

b

mgvrEC
v

θ−−= )(
(8)

Now solving for v, the magic of feedback appears:
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θ
b

mg
r

b

EC
v

b

EC −=


 +1 (9)

θ
ECb

mg
r

ECb

EC
v

+
−

+
= . (10)

Comparing this equation to the result with out feedback, the benefits will be plain.  If the 

driver maintains a constant accelerator angle, the engine force will be constant.  

Therefore, as shown below, Eq. (5) and (7) can be combined to yield Eq. (11). 

b
Fr e= (5)

b

mgF
v e θ−= (7)

θ
b

mg
rv −= (11)

In this example, the reference speed will be 20 m/s (about 45 mph).  For simplicity, I’ll 

arrange the constants such that a 1 degree slope would reduce speed by 1 m/s and a 2 

degree slope by 2 m/s.  Using b = 10 Ns/m, the approximate value at 20 m/s for a Porsche 

911 (see Appendix B), the gain on the incline would then be 
deg

570
N

.  For open loop 

control, each degree of incline adds 5% to the error from constant speed.  With a simple 

feedback circuit, the speed will hold much more constant. Choosing a value of 1000 for 

EC, yields the following result.  In the no cruise control case, Eq. (11) becomes Eq. (12). 

 θdeg1 ⋅−= s
mrv (12)

For the cruise control case, Eq. (10) becomes Eq. (13). 

θθ deg
deg 0099.099.0

1010

10

1010

1000
⋅

⋅ −=−= s
ms

m

rrv (13)

The cruise control system has reduced the effect of road grade on speed by a factor of 

100!  This is a tremendous increase in stability of v for changing θ.  If the feedback gain 
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was increased, then the independence of v from θ would increase further.  However, it 

does come at a cost.  Notice that now for no incline, the equilibrium speed has been 

reduced to 0.99r, an error of 1%.  This is referred to as the steady state error of the 

feedback system, and must be addressed in almost all feedback applications.  Since we 

set the controller output directly proportional to the difference between v and r, the 

engine would shut off if rv = .  Fig. (5) illustrates both the desensitivity and steady state 

error of this cruise control system on a sinusoidally oscillating roadway.  It compares the 

speed of a car with its accelerated pedal held constant and one with cruise control 

engaged (all other things being equal). One method for avoiding steady state error will 

be discussed in section VII on PID controllers.  Despite this drawback, the cruise control 

example has proven that feedback control systems produce important benefits in real 

world applications.  The next section is a general treatment of linear feedback systems, 

and will shed more light on the benefits and drawbacks of using feedback.
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FIG. 5.  For these two graphs, two cars are traveling on the same road.  
The road grade is sinusoidal, shown in purple.  (a) shows the speeds for 
the car with its accelerator pedal held at a constant angle (yellow), and 
one with cruise control engaged (teal).  (b) is a zoomed in subsection of 
(a), showing the desensitivity and steady state error in the feedback 
controlled speed.
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III. LINEAR FEEDBACK FORMALISM

As was mentioned at the start of Section II, in any feedback control application, 

there is some process, P, over which control is desired.  In the lingo of control system 

engineering, P is referred to as the plant.  Again, this process takes some input u and 

produces an output y, represented by Eq. (1) (reproduced below).

Puy = (1)

This is what is known as an open-loop system.  No information about the output of the 

system is looped back to affect its behavior.  It contains no feedback, and if the input 

changes by ∆u, then the output changes by P∆u.  A feedback controlled system, on the 

other hand, is error driven: the input to the system is modified based on a comparison of

the actual and desired outputs of the process.  If we want the system to produce an output 

r, then the feedback setup would look like Fig. (6). 

FIG. 6.  General feedback control setup of plant, P, with controller and 
actuator.

Output y is compared to the reference value r.  The controller then acts on the 

difference between y and r, feeding an appropriate input into the actuator.  The actuator 

then changes the system response based on this signal.  In the cruise control example just 

discussed, the onboard computer (controller) changes the engine throttle angle.  This 

change in throttle angle then corrects the output of the engine (actuator), adjusting the 

behavior of the car on the road (plant).  For this general treatment, all these different 

components will produce outputs linearly proportional to their inputs.  As a result, this 
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development applies to proportional feedback devices.  A proportional controller sends a 

signal to the actuator proportional to the difference between y and r.  Other kinds of 

controllers will be treated at the end of the paper, in section VII.  Since both actuator and 

controller are linear, the controller and actuator can be treated as a single block that takes 

in the difference of y and r and produces a signal modified by C.  I will combine them for 

this theoretical development, but in the construction of a feedback control mechanism the 

controller and actuator are often distinct parts.  The output y is then given by:

)( yrCu −= (14)

Puy = (15)

)( yrPCy −= . (16)

Notice that y is subtracted from r; this is what is known as negative feedback.  As y gets 

closer to the desired value, the controller and actuator will presumably need to exert less 

control on the process.  If instead the sum of y and r was taken, this would be an example 

of positive feedback.  Although not good for precise control of a dynamic system, 

positive feedback is used to create oscillators.

The result in Eq. (16) is the general form of the cruise control feedback system

seen in Section II.  While this works well for systems whose output is supposed to be 

driven to the reference value, other applications require amplification of the reference 

signal.  Adding a linear gain to the feedback path, F, can produce this amplification.  As 

will be shown shortly, if F is less than one the system output will be a multiple of r.  Fig.

(7) shows the block diagram corresponding to this setup.
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FIG. 7.  General feedback system setup with feedback gain F added.

In this case, Eq. (16) will be modified into the following form:

)( FyrPCy −= . (17)

Eq. (17) represents a general negative feedback configuration.  Solving for the output y

yields:

r
PCF

PC
y

+
=

1
. (18)

In Eq. (18), PCF is referred to as the gain of the feedback system.  In a standard feedback 

application, PC will be made as large as possible.  Transistor based operational amplifiers 

can have PC values of 106 or greater.2  At such large values, Eq. (18) can be well 

approximated by:

r
F

y
1≈ . (19)

The feedback gain F then controls the effective amplification of the system.  This 

approximation also sheds light on the basis for the steady state error uncovered in the 

cruise control example.  For F = 1 and a large value of PC, the effect of the one in the 

denominator is small, but it is not always negligible.  The one is a result of the use of 

proportional control, and also the cause of steady state error.  Fortunately, there are 

methods to eliminate steady state error by using more than just proportional control, as 

will be covered in Section VII on PID controllers.
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Another of the important tradeoffs of a feedback control system also stems from 

Eq. (18).  Without the feedback system in place, the output would be PCry = .  If the 

value of PC is huge, the open-loop output would be much larger than the output with 

feedback included.  For an amplifier, this large gain is important.  In fact, when feedback 

amplifiers were originally being conceived, many people rejected the idea because the

effective gain of the amplifier is reduced by including feedback.  In essence, a feedback 

control system gives away large amounts of amplification in order to improve other

properties of the system.  Feedback enthusiasts eventually won out, because the lost gain 

can be recovered by using multiple amplifiers.  On the other hand, the major 

improvements in system response can be vital. Two of these improvements will be 

examined here. First, if some disturbance, d, enters the plant as shown in Fig. (8), the 

feedback system will mitigate its affect.

FIG. 8.  General feedback system diagram with disturbance d
influencing the plant.

Now the output y is given by:

PdFyrPCy +−= )( (20)

( )dCr
PCF

P
y +

+
=

1
. (21)
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Under the open-loop condition, the disturbance would have been magnified by P and 

added to the output.  With feedback, the system automatically resists the disturbance.  

This is clearly demonstrated by comparing change in y due to the disturbance for both the 

open-loop case (∆yOL) and the feedback case (∆yCL), shown in Eq. (24). 

PdyOL =∆ (22)

PCF

Pd
yCL +

=∆
1

(23)

PCFy

y

OL

CL

+
=∆

∆
1

1
(24)

The closed-loop system suffers a smaller change in output by a factor of 

PCF+1 , which is referred to as the desensitivity of the system.3 Since PC is usually a 

very large value, the system has been desensitized to disturbances, like road grade in the 

cruise control example.  The disturbance need not be an external influence: electronic 

amplifiers suffer gain fluctuations due to changing temperature.  A feedback enhanced 

process is less susceptible to changes in its own properties!

The second major benefit is that process P can often be made to imitate some 

other process Q.4 If we wanted the process P to behave like Q, the controller C would 

need to be setup like Eq. (27). 

r
PCF

PC
Qry

+
==

1
(25)

PCF

PC
Q

+
=

1
(26)

)1( FQP

Q
C −= (27)

By adding a controller setup like Eq. (27), the properties of process P would be changed

to imitate process Q.  In theory, a controller can be found for most applications to satisfy 
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the above condition.  The mathematics for uncovering the behavior of a controller given 

desired and actual responses will be discussed in Section VI on transfer functions and 

pole-zero placement.  However, humans had been making use of feedback for nearly two 

thousand years before the development of control system theory.  The next section looks 

at the history of human use of feedback, from antiquity through locomotion.

IV. HISTORY OF FEEDBACK CONTROL

There are numerous opinions on what constituted the first human use of a 

mechanical feedback loop.  Hand-eye coordination is certainly a great example of a 

feedback circuit (try writing while watching your actions in a mirror for an experience of 

positive feedback).  Human attendants have made corrections to systems to achieve a 

desired result at least since the first use of fire.  However, the invention of a mechanical 

system that automatically adjusts its own behavior to reach a desired end clearly 

represents an important step in the sophistication of humanity.  According to Otto Mayr, 

the first use of an automated, external feedback loop was the design for a water clock 

from around 250 BCE.5 Although limited evidence remains, Mayr contends that 

Ktesibios of Alexandria invented the first feedback controlled device. Only the water 

clock has the distinction of being the first feedback system developed, however all three 

developments outlined below were invented quite independently.  The self-regulating 

oven and the centrifugal governor were also ingenious engineering breakthroughs which 

occurred before the formalism of feedback theory.6,7 



17

A. Water Clock

To use water to keep time, a constant flow of water is needed.  A vessel of water 

with a spout at the bottom will only produce a constant flow if the level of the water is 

constant (See Fig. (9)).  The pressure, P, at the bottom of the vessel is determined by the 

weight of the volume of water above the opening.8  In Eq. (28), the area of the spout is 

denoted A, the density of water is denoted ρ, the depth of the water h, and gravitational 

acceleration g.

FIG. 9.  Vessel of water with a spout at the bottom.  The pressure over 
the area of the spout is dependent on the depth of the water.

gh
A

ghA

A

mg

A

F
P ρρ ==== )(

(28)

The flow produced by this pressure depends on the nature of the spout, but is 

always dependent on the pressure on the spout opening.9 The level of the vessel would 

then drop because of this flow, causing a drop in pressure.  To keep the level constant, the 

vessel would have to be replenished by a constant flow equal to the outflow, seemingly 

just moving the problem up a level.  Level dependent pressure is one reason that water 

was not used in hour glasses, the level would drop much faster at the beginning of the 

hour than at the end.  As discussed by Clark Ritz in his comps paper, the granular nature 

of sand means that for a column of sand, pressure is independent of height of the 

h

A
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column.10  The flow of sand is then independent of height making it  a simpler measure 

of the passage of time. Ktesibios devised a system that kept the level of one vessel 

constant, even when feeding it from a non-constant source.11  The basic idea of his design 

is shown in Fig. (10). 

FIG. 10. Float controlled fluid level, as first used in the water-clock of 
Ktesibios.12

The major breakthrough of Ktesibios’ design is the use of a float to control the 

rate of input.  In the equilibrium case, the float in the constant level vessel will restrict the 

water input to the rate of output.  If the water level should rise, the float would further 

plug the input pipe, limiting or blocking flow into the vessel.  Notice that for this 

configuration, the float is both the controller and the actuator.  Other examples of 

feedback control from antiquity exist, mainly for level control of fluids, some of which 

separated the sensor and actuator.13  It took nearly two-thousand years before another 

truly unique example of feedback control surfaced.

B. Self-regulating Oven

In the early 1600’s, alchemists were still searching for a way to turn ordinary 

metals into gold.  One hypothesis was that transmutation into gold might occur if the base 

metal was held at a constant temperature for a long time: an application ripe for the 

application of feedback.14  Enter Cornelis Drebbel, a Dutch chemist who served the kings 
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of England.  He developed an oven that maintained a constant temperature, the idea 

behind which is pictured in Fig. (11).  The heat produced by a fire is dependent on the 

availability of oxygen, so Drebbel used the temperature of the oven to control the air 

intake.  The thermal expansion of the fluid in the thermometer adjusts the opening of the 

damper.  Not surprisingly, the alchemy application did not pay the bills, but the oven was 

soon modified to serve as an incubator for chicken eggs.15  It was only another hundred 

years before the next novel application of feedback control, which again held promise for 

the automation of food production.

FIG. 11.  Self-regulating oven design, first conceived by Cornelis 
Drebbel in the 1600’s.16

C. Centrifugal Governor

Windmills harness the power of the wind to grind grain between two large stones, 

producing flour.  While certainly easier than grinding all the grain by hand, the inherent 

gustiness of wind makes the process less than ideal.  Given the immense friction between 

the two millstones, if the wind died just for a moment, the stones might grind to a halt.  
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Considerable work would be needed to get the large masses rotating again.  The use of 

feedback can drastically reduce fluctuations in an output even if the input varies widely.  

During the latter half of the 1700’s, millwrights invented several systems for keeping the 

millstones rotating on gusty days.17 Unfortunately limited information on the inventors 

or the thought behind the inventions is left, mostly just patent applications remain.  The 

most important invention, in terms of its effect on the future of feedback control, was 

Thomas Mead’s patent of 1787.18  In his design, two pendulums were made to rotate at 

the speed of the millstones; the centrifugal motion of the pendulums was connected to 

height of the rotating millstone.  At high wind speeds, the stone was allowed to drop and 

grind away at the grain.  If the wind suddenly waned and the speed of the stones started 

to drop, the pendulums would swing in, the stone would be picked up and the friction 

would be reduced.  While the governing of speed was a very important invention, it took 

an application of the concept in another arena to make feedback famous. 

The big break that brought feedback out of the shadows came with the 

development of steam and internal combustion engines.19  When the load on an engine is 

suddenly increased, something needs to be adjusted on the engine to increase its power 

output.  For steam engines, a throttle on the line between the boiler and the pistons 

controls how much steam is used to power the engine.  When the throttle opens wider, 

more steam is let through and the engine output is increased.  Without an opening of the 

throttle, when the load on an engine increases, the speed of the engine will drop and if the 

load is big enough, the engine will stall.  Engines were built with manual throttle 

controls, but clearly an automated system is superior.  Removal of the human element 

and response time of an attendant would increase the reliability of the engine.  All of 
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these arguments very closely parallel those that brought about the use of feedback to 

maintain mill speed. In 1788, James Watt modified the centrifugal mechanism developed 

for mills to fit the steam engines his firm was developing.20

FIG. 12. Centrifugal governor for use in steam engines.21

Watt and his colleagues attempted to keep their governor technology secret, since 

they could not patent a borrowed concept.  While the technology itself spread rather 

slowly, the concept of the centrifugal governor for steam engines spread rapidly across 

England.  In fact, in a rather humorous twist, in 1804 somebody in England attempted to 

file a patent for:

… the centrifugal pendulum as applied to the speed regulation of mills, 
instead of giving a detailed explanation, he simply referred to it as “a pair 
of centrifugal balls – like the governor of the steam engine …”22

Originally developed to control the speed of mills, the centrifugal governor gained its 

notoriety from success on steam engines.  The same concept was adapted to internal 

combustion engines, and the concept is still use in cars to this day.  While Watt was too 
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“practical” to study the theoretical side of the governor, several mathematicians 

developed concepts surrounding feedback control in the 19th century.23

D.  Feedback Theory

One of the concepts fundamentally important to feedback control is the idea of 

stability.  Anyone who has ever experienced the potentially ear piercing whine of a public 

address system, has experienced a feedback system becoming unstable.  In this example, 

the microphone picks up some of the output of the speakers.  If the amplification of the 

microphone is high enough, the small input will produce an increase in the volume of the 

output signal.  This can quickly spiral out of control; hence the sound control board at 

most electrically enhanced outdoor functions.  The first mathematician to discuss 

instability and treat it using differential equations was G. B. Airy, who was also an 

astronomer.24  Airy adapted the centrifugal governor method to rotate telescopes counter 

to Earth’s rotation.  He noticed in 1840 that for certain setups “the machine (if I may so 

express myself) became perfectly wild.”25

In 1868, James Clerk Maxwell studied the differential equations of the governor 

and determined that they depended on the roots of certain characteristic equations (see 

Section VI on transfer functions).26  He successfully deduced the stability criteria for 2nd

and 3rd order polynomials.  E. J. Routh generalized Maxwell’s method to polynomials of 

any order, to win the 1877 Adams Prize.27,28 While still useful today for lower-order 

systems, Maxwell and Routh’s method is too cumbersome for higher-orders.  Also 

notable was A. M. Lyapunov’s study (1893) of the stability of non-linear differential 
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equations of motion.29  The mathematical formalism of feedback engineering received a 

huge boost in the 1930’s, when a non-mechanical need for feedback control surfaced.

V. OPERATIONAL AMPLIFIER

In 1915 a transcontinental telephone line opened, connecting the United States as 

never before.30  This was quite a technical feat, as any transmission line will attenuate the 

signal that passes through it.  As the signal produced by a microphone in New York 

travels across the country, its amplitude drops with the attenuation of the transmission 

line.  To arrive in San Francisco differentiable from the background noise, the signal had 

to be amplified.  Bell Telephone Laboratories was founded in 1925 as a cooperative 

venture between AT&T and Western Electric, partly to address this issue.31  The lab 

conducted research into all areas associated with telephone and telegraph 

communications, from speakers and microphones to transmission.  Several important 

breakthroughs surrounding feedback amplifiers occurred at Bell Labs during the 1930’s.  

Vacuum tubes were the best suited amplifiers of the day, but unfortunately they

were not perfect.  After going through a series of these vacuum tubes, the output signal 

was distorted because of their inherent nonlinearities.  If too many amplifiers were placed 

in series, the voice would become unintelligible.  While the 1915 line worked well 

enough, economic pressures were pushing telephone companies towards transmission 

lines with smaller wires and thus higher attenuation.32  In fact, by the time coaxial cable 

and its Megahertz carrier frequencies connected the country, nearly 100 times as many 

amplifiers would be necessary for transcontinental communication.33 Bell Labs began 

working on a linear amplifier to meet these needs.
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The major break came from Harold Black, who realized that feedback was a 

solution that would solve issues with both the linearity and gain fluctuations of 

amplifiers.  After graduating from Worcester Polytechnic Institute in 1921 with a degree 

in electrical engineering, Black went to work for Western Electric.34  Eventually he ended

up at Bell Labs, working on linearizing the latest breed of vacuum tube amplifier.  While 

development of the feedback amplifier is what brought him fame, he first realized that 

feedforward could solve the linearity problems.  In Black’s mind, the output of an 

amplifier consisted of two overlapped parts, the linearly amplified signal and some non-

linear distortion.35 This concept is shown in Fig. (13), where the output signal (purple) is 

the sum of the linear signal (blue) and the distortion (red).  The feedforward setup was 

then a natural solution.  The output of the amplifier was fed into another electronic 

circuit.  This circuit would calculate the distortion signal and then subtract that distortion 

from the amplifier output.  A block diagram representing this setup is shown in Fig. (14). 

FIG. 13.  Harry Black’s conception of amplifier output (purple) was 
the overlapping of a linearly amplified signal (blue) and some 
distortion (red).
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FIG. 14.  Block diagram of one of Harry Black’s first attempts to 
linearize vacuum tube amplifiers, in this case using feedforward, C.

Unfortunately, the feedforward term C requires precise setup for the amplifier 

gain A.  If the slope of the linearly amplified signal changes, then C has to be recalibrated

to be able to pick out the distortion.36 Since amplifier gains fluctuate with temperature, 

humidity, and many other factors, recalibration would have to be done almost 

continuously.  While possible in the lab, this cannot be done in the field, especially not 

when a more elegant solution exists.  Since C requires knowledge of A, why not just feed 

the output back through A?  When Black reached this epiphany, the operational amplifier 

was born.

An operational amplifier (op-amp) is an electronic amplifier with a huge open-

loop gain A, which can be many orders of magnitude.37 After feedback is included, the 

gain of the op-amp is determined by feedback gain B, just like was seen in Section II and 

Eq. (19).  These days they are built from transistors instead of the vacuum tubes that 

Black was accustomed to, but the principle remains the same.  A block diagram

representation of an op-amp is shown in Fig. (15), while an electrical schematic is shown 

in Fig. (16). 
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FIG. 15. Block diagram of an operational amplifier with amplification 
A and feedback gain B.

FIG. 16.  Electrical schematic of an operational amplifier or op-amp.  
The amplifier itself is the triangular block labeled A, but the 
amplification of the circuit also depends on the two resistors, R1 and 
R2.  Together, these resistors form the feedback gain B in Eq. (29).38

The voltage output of an op-amp is given by Eq. (29).39

inout V
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A
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+
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1
(29)

Again, I’ll show that changes or nonlinearities in the amplifier, in this case ∆A, are 

reduced by the desensitivity of the system.  If the overall gain of the amplifier is denoted 

G, then Eq. (32) shows the relative deviation magnitude caused by ∆A.40
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This was the improvement that Black was looking for: increase in linearity and decrease 

in sensitivity to amplifier fluctuations.  Black, however, met with some rather obstinate 

resistance from both higher-ups at Bell Labs and the US Patent Office.  To get vacuum 
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tubes to have high gains was a real chore, so giving away the gain seemed a steep price to 

pay.41  In addition, feedback was relatively well known to electrical engineers working 

with vacuum tubes.  Their opinion of it really put the negative in negative feedback.  

Electrical engineers often worked very hard to eliminate feedback in their amplifier 

circuits because of the instability it produced.  Just like a ‘singing’ public address system, 

amplifiers were prone to the development of oscillations that would overpower any useful 

information.  The basis for this is that B has to be treated as impedance, not just a 

resistance.  Even if no actual capacitor is included in the circuit, there will be a small 

capacitance inherent in the wires and solder joints of the circuit.  The impedances for a 

capacitance C and resistance R are as follows:42

RZR = (33)

Ci
ZC ω

1= (34)

where i represents an imaginary number and ω is the frequency of oscillation.  Including 

a frequency dependent imaginary term in the gain is inviting instability.  Plotting AB in 

the complex plane, the magnitude of this vector is known as the loop gain of the system.  

Properties of the loop gain determine whether or not the system will be stable.  The angle 

between the positive real axis and the loop gain is then the phase shift caused by 

amplification.43  If the phase shift ever reaches 180° for some frequency, output signals at 

this frequency are essentially the inverse of the input scaled by the magnitude of AB.  

When this is then subtracted from the input, it is inverted again such that it constructively 

overlaps with the input! In Fig. (17) the input signal is the larger, green signal, while the 

blue signal is about to be fed back into the input.  The blue signal has had its sign invert 

to subtract it from the green signal in standard negative feedback fashion.  However, if a 
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180° phase shift is placed in the feedback path, the blue signal will slide half a 

wavelength with respect to the green.  Suddenly negative feedback has become positive! 

If the magnitude of 1≥AB  in these circumstances, then the feedback loop will oscillate.  

The man who developed this understanding of when instability strikes was a researcher 

with AT&T, Harry Nyquist.

FIG 17.  Input signal is green, negative feedback signal is blue.  If a 
180° phase shift is induced in the feedback path, negative feedback will 
become positive.

A. Nyquist Stability Criteria

Nyquist was a Swedish immigrant who received a Ph.D. in physics from Yale.44

In 1928, Black joined Nyquist in conducting a trial of the new feedback amplifiers.  

These studies formed the basis of the famous Nyquist stability criterion, outlined in his 

1932 paper on “Regeneration Theory.”45 In his paper, Nyquist defined a stable circuit as 

one where “all disturbances impressed upon the circuit died out in a finite time.”  In an 

unstable circuit, “disturbances went on indefinitely”, perhaps even growing in amplitude.  

From this definition, and the insight on phase changes and gain, Nyquist developed his 

criteria and a simple, empirical way to test for instability.  Capacitance and inductance 

have frequency dependent, imaginary impedances.  Therefore it is necessary to look at 

the whole frequency range of the system to determine if instability will strike.  The loop 

gain of a feedback circuit (AB for the feedback amplifier above) is plotted for the range of 
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frequencies until it is clear that higher frequencies will not be amplified.  If this line 

contains or encircles the point (-1,0), where the amplifier has unity gain and 180 degree 

phase shift, then the circuit is unstable.  An example of a Nyquist plot, as these plots are 

known, is shown in Fig. (18). 

FIG. 18.  Example of a Nyquist plot.  Gain and phase a plotted over a 
range of frequencies.  Since the point (-1,0) is encircled, the system 
depicted in this plot would be unstable.46

To test for instability, an engineer no longer had to connect the feedback path and see 

what happened.  The feedback path could be left disconnected and the input signal 

compared to the feedback signal.  Plotting the amplitude gain and phase shift for a range 

of frequencies, it was then graphically apparent whether oscillations would strike.

B. Bode Plot

While Nyquist’s method for graphical analysis of stability is a powerful tool, it 

has one main drawback: amplifier parameters fluctuate.  An amplifier could be stable on 

a cold morning, but unstable when the temperature rose in the afternoon.47  Some kind of 

margin of error needed to be built into the stability analysis so that the amplifier could be 

declared stable for a range of operating conditions.  This was the reasoning that occurred 

to Hendrik W. Bode, another Bell Labs researcher, as he was attempting to use feedback 

to linearize an existing amplifier.48  The task drove him so batty that he eventually 
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scrapped the whole effort and built a new feedback amplifier that met his original needs.  

He also left behind several colorful quotes from the effort, including:

The engineer who embarks upon the design of a feedback amplifier must 
be a creature of mixed emotions.  On the one hand, he can rejoice in the 
improvements in the characteristics of the structure which feedback 
promises to secure him.  On the other hand, he knows that unless he can 
finally adjust the phase and attenuation characteristics around the feedback 
loop so the amplifier will not spontaneously burst into uncontrollable 
singing, none of these advantages can be actually realized.49

Bode’s method for dealing with this issue was again a graphical analysis tool.  In this 

case, gain and phase shift are plotted on a logarithmic plot versus frequency; an example 

of a Bode plot is shown in Fig. (19). 

FIG. 19.  Example of a Bode plot, showing how close system is to 
instability.50

This plot reveals two important quantities that describe the margin before instability 

strikes: the phase margin and the gain margin.  For a particular setup, the phase margin is 

the number of degrees by which the phase change is less than 180° when the gain 
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amplitude equals 1.51  In Fig. (19), the frequency at which this occurs is just less than 1, 

so just to the left of point C.  The phase margin in this case is around 10 degrees.  The 

gain margin is the factor by which the gain is less than 1 when the phase change equals 

180°.52  For Fig. (19), the gain margin is about 0.7 and can be measured at point C.  In 

general, amplifiers with insufficient gain and phase margins could become unstable if the 

conditions changed.  As a result, amplifiers are now designed to be stable to much higher 

frequencies than they are actually used, so that they are free of instability concerns.  In 

the case of the amplifier Bode was working with, while it was designed to work at 1 

MHz, the amplifier was stable all the way to 30 MHz.53  Bode and Nyquist plots are both 

powerful, graphical analysis methods, but a more equation driven method for the analysis 

of feedback system response exists.

VI. TRANSFER FUNCTIONS

A. Laplace Transforms

Laplace transforms are a fundamental tool for any control engineer.  A Laplace

transform takes a signal from the time domain into the frequency domain.  The definition 

for the Laplace transform Y(s) for some function y(t), where s is the complex frequency 

given by ωσ is += , is:

∫
∞

−==
0

)()}({)( dttyetyLsY st . (35)

This technique is useful for controls because of the concept of impulse response h(t).  The 

impulse response of a system is the response to an impulse of minimal duration.  Taking 

the Laplace transform of h(t) produces the transfer function of the system H(s). The 

transfer function of a system is a rational polynomial of s and completely describes the 
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response of a system to any input.  Readers interested in the proof of this utility should 

see Appendix C.  While the Laplace transform is an important tool, the transfer function 

of a system is more easily determined from the differential equations governing system 

behavior.  For the rest of this section, a damped harmonic oscillator will be used to 

demonstrate the power of transfer functions.  It may seem surprising that a damped 

harmonic oscillator can be treated with feedback techniques, but feedback is present.  For 

any object, acceleration determines changes in velocity and position.  The feedback 

appears for a harmonic oscillator because its acceleration is dependent on position and 

velocity.

B. Transfer Function from Differential Equation

The one-dimensional damped oscillator is a true physics classic, with position 

dependent restoring force with constant k and viscous friction with coefficient b.  The 

differential equation is given in Eq. (37):

xmxbkxFnet &&& =−−= (36)

0=++ x
m

k
x

m

b
x &&& . (37)

The following change of variables is convenient, and specifying initial conditions the 

system response is now fully determined:

02 2 =++ xxx ωγ&&& (38)

α== )0(,0)0( xx& . (39)

To find the transfer function X(s) for this equation, the following trait of Laplace 

transforms is crucial (see Appendix C):

}{)0(}{ xsLxxL +−−=& . (40)
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Using Eq. (40), the transforms to x&  and x&& become:

)(}{ ssXxL +−= α& (41)

)(}{0}{ 2 sXssxsLxL +−=+−= α&&& . (42)

Applying the Laplace transform to the entire equation then yields:

( ) 0)()(2)( 22 =++−++− sXssXsXss ωαγα . (43)

So the transfer function is then:
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C. Pole-Zero Placement

The transfer functions seen in control system applications are rational 

polynomials in the complex variable s.  This is a result of their derivation from 

differential equations and the associated sinusoids and exponentials.  See Appendix C for 

more examples and information on transfer functions.  In the lingo of controls, when the 

numerator has a root, it is referred to as a zero: the transfer function is 0 at that point.54

Roots in the denominator are referred to as poles: the transfer function spikes at these 

locations and unstable behavior may occur.  As will be shown, the locations of these 

poles and zeros go a long way to describing the behavior of the system.  The poles and 

zeros for the harmonic oscillator are given by Eq (44), reproduced below.
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)( ωγ
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++

+=
ss

s
sX (44)

This function has a zero when α is 0.  Clearly, the system has no response if it begins in 

the stable equilibrium and the transfer function demonstrates this.  The poles of the 
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system are more interesting, given by the roots of the denominator.  With 22 ωγυ −= , 

the poles are located at:

υγ ±−=s . (45)

To solve for the time domain response of the system, I’ll put the transfer function into a 

form appearing in Table C1 and then correlate the response.  The first step is to separate 

the numerator:
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Then, making use of the fact that υυγυγ 2)()( =−−−+− , and multiplying by υυ22 , the 

transfer function can be expressed as:

( )( ) ( )( )



−+++

+−+++
= υγυγ

υγυγυγ
υ

υ
α

ssss

s
sX

2
2

2

2
)( . (47)

Both of these two forms appear in Table C1, so the time-domain response is then:

( ) ( )[ ]tttt eeeetx )()()()( 2)()(
2

)( υγυγυγυγ γυγυγυ
α −−+−−−+− −−−−+= . (48) 

Pulling out common terms and simplifying, this becomes:

[ ]ttt eeetx υυγ γυγυυ
α −− −++= )()(
2

)( . (49)

First, you’ll notice that α=)0(x , so the initial condition has been preserved.  To bring 

the role of poles to light, we’ll look at several features of Eq. (49).  Fig. (20) displays 

each of these cases graphically.  When γ = 0, the poles of the system are imaginary.

Based on the harmonic oscillator equations, the undamped system should oscillate at 

m
k=ω .  The transfer function has yielded this solution as well.  In general, purely 

imaginary poles will generate oscillatory responses, as shown in purple in Fig. (20).55  If 
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instead ωγ < , the system has complex poles.  As we would expect, the response of this 

underdamped system is to oscillate inside of a decaying exponential envelope.  This 

response is shown in blue.  When ωγ > , the poles of the system are real and are shown 

in red in Fig. (20).  Again, the transfer function result agrees with standard harmonic 

oscillator theory: an overdamped oscillator decays exponentially.  The critical damping 

case of ωγ =  is shown in yellow in Fig. (20), but requires a different equation than Eq. 

(49).  If 0=υ in Eq. (46), then using Table C1 the system response is:

[ ] ttt etteettx γγγ γαγγα −−− +=+−= )1()(2)1()( .   (50)

This is the same solution as the critically damped oscillator.  The transfer function 

yielded the proper result in each case!  In dealing with a system with multiple sets of 

poles, the zeros of a system play a larger role.
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FIG. 20. Graph (a) shows the pole positions corresponding to 
responses seen in graph (b) for a damped harmonic oscillator.
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In a system with multiple sets of poles, each set will produce an exponential that

will enter into the total response of the system.56  The effect of zeros is slightly more 

complex.  The proximity of zeros to the poles of a system controls the relative initial 

amplitude of the poles.57  For example, if a zero is placed directly on top of a pole, the 

affect of that pole is negated; both pole and zero disappear from the transfer function and 

no longer affect the system response.  In practice pole-zero cancellation is trickier than 

this makes it sound.  Fluctuations in system parameters will move either the pole or the 

zero so they no longer totally overlap.  Pole-zero placement, however, is a very important 

tool for controls and can customize the response of a feedback system.  The plant will 

have some built in poles and zeros, but the controller can be configured to yield any 

result desired.  One way to accomplish this is to use the controller and actuator to adjust 

the parameters of the plant to maneuver the poles and zeros of the plant.  Another way is 

to setup the controller so that its zeros minimize the poles of the plant and it introduces its

own poles.  An example of this technique is to use a configurable PID controller.

VII. PID CONTROLLER

As was seen in the cruise control example, steady state error plagues purely 

proportional control systems.  However, if an additional term is added based on the time 

integral of error, problems with steady state error can be avoided.  When the proportional 

term settles in on a steady state solution, the integral term starts to accumulate the error.  

This term then modifies the controller output to push the error to zero.  At an error of 

zero, the proportional term no longer has an affect on system response and the error 

integral term is no longer changing. Control comes from the history of the system stored 
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in the integral, and with no change in system dynamics will maintain zero error.58

Combining the use of proportional and integral control law is often referred to as PI 

control.  The controller equation, Eq. (14), becomes:
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Where CP is the coefficient for the proportional term (previously just C) and CI is the 

coefficient for the integral term.  While PI control is good for eliminating steady state 

error, the integral term takes time to change.  This can significantly affect the response to 

an impulse or sudden change in input, slowing the system’s response to changes and 

inducing overshoot.  To regain the lost response time, it is necessary to add a term that 

can predict changes in the error.

Including a derivative of the error in the control law allows the rate of change of 

error to factor into the equation.  For a PD controller, the response time and settling rate 

will be vastly improved.59 The controller equation for a PD controller is shown below:

)()( yrCyrCu DP && −+−= . (52)

If the system receives a sudden shock, the error will change quickly.  In a proportional 

control system, little control would be exercised until the error grew in magnitude.  With 

the derivative term, the control system will notice the changing error and immediately 

take corrective action.  Additionally, as the system approaches the steady state solution,

the derivative term will act as a sort of damper to potentially eliminate overshoot.  As the 

system output approaches the desired value, the proportional term will continue to drive 

the system towards equilibrium.  However, the derivative term will notice the decreasing 

error and, if the constants are chosen properly, cause the system to act like a critically 
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damped oscillator.  The drawback is that for just PD control the system will not settle 

exactly on the desired value, still suffering from steady state error.

To get the best of both worlds, controllers incorporating all three terms have been 

developed, referred to as PID controllers.60  The PID has constants associated with each 

term in the control equation, which have to be tuned to meet the application.  Fig. (21) 

shows the block diagram of a standard PID controller.  The transfer function for a PID 

controller is derived in Appendix D and shown in Eq. (53).  

FIG. 21.  Block diagram for a PID controller. See Appendix A for 
explanation of block meaning.
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The poles and zeros of this transfer function are given by Eq. (D11) and (D12).  In terms 

of pole-zero placement, it’s clear from the transfer function that the poles and zeros of a 

PID controlled system can be tailored to produce any response.  Particularly, in Fig. (22), 

the only parameter changed was CD, and the system response covers the board of 

possibilities.  This feature is what gives the PID controller its utility: for any linear plant, 

the response of the system is completely customizable.  
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FIG. 22. Comparison of PID controller output for changing CD.



41

VIII. SUMMARY OF CLASSICAL CONTROLS

The linear control system design techniques discussed in this paper are referred to 

as classical controls.  Automatic feedback control of processes began in antiquity with 

water clocks.  Fluid level control was the only really example of pure feedback control 

until the development of controlled temperature ovens in the 1600s.  Feedback control 

then experienced a couple big breakthroughs.  First, centrifugal governors on steam 

engines in the early 1800s brought feedback notoriety.  The development of the op-amp 

at Bell Labs in the 1930s brought the mathematical formalism of feedback into focus.  

Several important tools emerged from the minds of Bell Labs engineers: Harry Nyquist’s 

stability criterion and Hendrik Bode’s concepts of gain and phase margin.  Completing 

the classical controls toolkit is the idea of the transfer function.  This lends itself to 

control system analysis and design based on the locations of the poles and zeroes of the 

system.  The culmination of linear feedback control is the PID controller, whose response 

can be tuned to optimally control any process.
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APPENDIX A:  BLOCK DIAGRAM SYMBOLS

Block diagrams are an important graphical tool for control system engineering.  

The diagram consists of blocks and arrows connecting the different blocks.  Each block 

represents some process or action in the system, while the arrows indicate the flow of 

energy or information through the system.  All block diagrams were created using 

Simulink©, a graphical programming add-on to the mathematical simulation package 

MATLAB©.  Pieces of Fig. 23 are reproduced below and each of its blocks explained:

Gain block:

Always triangular.  Multiplies input by the coefficient displayed.

Summer:

Always circular.  Adds inputs with sign shown.

Function:

Always rectangular.  Used in this paper to represent general processes.  Since all 
processes in this paper are linear, effectively these blocks multiply by coefficient 
displayed.  (Side note:  In actual usage, to multiply by P the function would have 
to be written P*u where u indicates block input.  This has been left out for 
clarity.)

Constant:

Always square.  Constant value input to simulation.

Scope:

Graphically displays input versus simulation time.

Derivative:

Takes continuous time derivative of input.

Integral:

Takes continuous time integral of input.
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APPENDIX B: DERIVATION OF DRAG COEFFICIENT

In the cruise control example, a drag force proportional to speed was used.  

Viscous drag is a complicated phenomenon; this approximation was chosen for its 

simplicity since viscous drag is not the focus of the paper.  While this is a common 

approximation in physics, automobile manufacturers release drag information based on a 

different approximation:

2
2
1 vACF Dd ρ= . (B1)

In Eq. (B1) ρ is the density of air at STP ( 33.1
m

kg ),61 v is the speed of the car, A is the 

cross-sectional area of the car, and CD is a unit-less coefficient based on the shaped of the 

car.  This coefficient has a value of 0.34 for a 2004 Porsche 911 GT2.62  The exact cross-

sectional area of the GT2 is not given, so I’ll approximate as a rectangle with the given 

height 1.275 m and width of 1.830 m.  At 20 m/s (around 45 mph), the drag force 

experienced by the GT2 is given by Eq. (B2).
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To get the same drag for from my approximation, the value of b is given in Eq. (B3).
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APPENDIX C:  UTILITY OF THE TRANSFER FUNCTION

The transfer function of a system is defined as the Laplace transform of the 

system’s impulse response.63 The impulse response of a system is the behavior the 

system exhibits after an impulse of minimal duration.  For an impulse p applied at time σ

to system y with impulse response h, this can be represented by Eq. (C1).

)()( σ−⋅= thpty (C1)

By Eq. (35), the transfer function H(s) for a system with impulse response h(t) is 

given by:

∫
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The goal of this appendix is to show that the transfer function can be used to 

describe the response of a system to any input.  Systems in this paper, and to which the 

following derivation applies, are both linear and time-invariant.  They therefore follow 

two important rules:64

• The principle of superposition: “if the system has an input that can be expressed 
as a sum of signals, then the response of the system can be expressed as the same 
sum of the individual responses to the respective signals.”  This allows each input 
signal to be treated individually, then summed together to get the total system 
response.  

• Second, the response of the system can be described by the convolution of the 
input and the unit impulse response of the system.  Here the Laplace transform 
comes to the rescue, as convolution in the time domain is just multiplication in the 
frequency domain.

Based on Fourier series, we know that any input can be expressed using linear 

combinations of complex exponentials, like ste  where ωσ is += .  

( )∑ ++= ...)( 21 tsts eetu (C3)
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Applying rule 1, we can then treat each tske  separately.  Not only that, but each u(t) can 

be represented by a series of impulses.  So, to find the response of a system at time t, we 

need only sum up the response from this series of impulses.  Eq. (C1) then becomes:

∫
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t

dthuty σσσ )()()( (C4) 

This is the convolution of impulses and impulse responses, just as rule 2 predicted.  As 

noted, the Laplace transform will allow us to get away from the convolution.  Eq. (C4) 

can be morphed into a Laplace transform by the following tricks.  First, change 

integration variables to στ −= t .
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Next, applying Eq. (C3) to this, we get: 
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Pulling out the ste :
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This is just a series of Laplace transformations of )(τh , so we arrive at:

...)()()( 21
21 ++= tsts esHesHty  . (C8)

The response of the system is given by the sum of complex exponentials weighted by the 

transfer function of the system.  Not only is the transfer function useful in this way, it is 

possible to determine the system response without even working through integrals.  The 

transfer function of a system can be found just from the differential equations governing 
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the system.  This is shown in the paper, and requires the following fact.  If we let X be the 

transfer function of a system x, then the transform of x& is given by:
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This looks like a great opportunity to use integration by parts.
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Applying the limits and using the definition of a Laplace transform, we get:

sXxxL +−= )0(}{ & . (C11)

Eq. (C11) is a very useful result.  Finally, Table C1 shows the Laplace transform of a few 

different functions of time used in this paper.  A more complete listing can be found 

inside the front cover of Franklin’s text.65
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Table C1.  Laplace transforms for selected functions.
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APPENDIX D:  PID CONTROLLER TRANSFER FUNCTION

To develop the transfer function of any system, the easiest place to start is the 

differential equation governing system dynamics.  The equation for the output of a PID 

controller linear plant P is:

( ) ( ) ( ) 


 −+−+−= ∫ dtFyr
C

yFrCFyrCPy
I

DP

1&& . (D1)

For simplicity, I’ll consider only constant reference values, so 0=r& .  Integrating r over 

some time t then yields:

( ) ( ) ( )dtFyrt
C

yFCFyrC
P

y

I
DP ∫−++−= 1& . (D2)

Collecting all y terms, this becomes:
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Applying the Laplace transform to both sides (see Appendix C, Table C1), it begins to 

take transfer function form:
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Isolating Y, we’ll eventually by left with the transfer function.
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Finally, we arrive at the transfer function:
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Let’s say that F = 1, so y is supposed to be equal to r.  For simplicity, I’ll also set r = 1.  

We now have:
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This function has the following poles and zeros:
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