P228 Course Evaluation

I’ve enjoyed working with you this past term and I am interested in getting your feedback on this course. This feedback will help me improve the course and my teaching in the future. Please submit this course eval in the envelope provided with your name on it so that you can get credit for submitting it. Do not write your name on the course eval. You should submit it by 1pm Monday, November 21st in the black container outside of Trenne’s office (Olin 331). **This course eval is a 0/1 multiplier for your final exam.** After grades are submitted, Trenne will give me the course evals. If you would prefer to type your responses, an electronic copy is available at the very top of our Moodle page below the News Forum.

1) Below are the goals I had for you in this course. Please indicate the extent to which you feel I met these goals:

<table>
<thead>
<tr>
<th>My Goal</th>
<th>Did not meet goal</th>
<th>Met Goal</th>
<th>Exceeded Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain quantum mechanics briefly and give at least three examples of physical observations that are explained using concepts from this field of physics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State the values of various important physical constants relevant to atomic & nuclear physics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present clear and correct solutions to problems and conceptual questions in quantum mechanics, atomic physics, nuclear physics, and particle physics.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work effectively in a group to observe some physical phenomena, record data based on a model of the situation, determine whether the data supports the model, and communicate this work to another scientist.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appreciate the relevance of physics (seen and unseen) in your everyday life.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) On the left side of the table below are several of the skills that the physics faculty would like you to develop as you take courses in the department (whether you intend to major or not). By selecting the appropriate box, indicate your proficiency after taking this course and whether you feel this rating is better than how you feel you rated at the beginning of the course.

<table>
<thead>
<tr>
<th>Departmental Goal</th>
<th>None</th>
<th>Not Much</th>
<th>Some</th>
<th>Very</th>
<th>Extremely</th>
<th>Do you feel this was an improvement over the beginning of the course?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify and implement appropriate strategies to solve problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate problem solutions (e.g., do my answers make sense?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluating uncertainties/approximations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply/integrate physics knowledge to understand real problems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test a system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model a system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparing experimental results to theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing for a technical audience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued ➔
3) My hope was that during lab you would develop and/or refine particular lab skills.

<table>
<thead>
<tr>
<th>Lab Skill</th>
<th>None</th>
<th>Not Much</th>
<th>Some</th>
<th>Very</th>
<th>Extremely</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintaining a technical lab notebook</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building/assembling equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propagating uncertainty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4) What topic(s) did you enjoy the most or find most interesting? Why?

5) What topic(s), if any, did you enjoy the least? Why?

6) Which of these teaching pedagogies was most helpful for you learning the material? Which should I keep using? Select ALL that apply:

- [] Lectures
- [] Demos
- [] Moodle Site (Organization, Links, etc.)
- [] In Class Worksheets
- [] Warm-up Questions
- [] Homework Problems
- [] Labs
- [] Partner Discussions In Class
- [] Clicker Questions
- [] Other (please list):

7) Which of these teaching pedagogies, if any, were not helpful for you learning the material? Which should I stop doing? Select ALL that apply:

- [] Lectures
- [] Demos
- [] Moodle Site (Organization, Links, etc.)
- [] In Class Worksheets
- [] Warm-up Questions
- [] Homework Problems
- [] Labs
- [] Partner Discussions In Class
- [] Clicker Questions
- [] Other (please list):

8) What could I do to make the class better?
9) Please give me specific feedback on the labs.
 a) Roughly how much time did you spend on the pre-lab exercises per week? ________________
 b) Roughly how much time did you spend on the lab checkouts per week? _______________
 c) Which lab(s) did you like the most (circle) and least (cross out)?
 Classical & Quantum Light Electron Diffraction Beta Decay
 Moseley Gamma Ray Spectroscopy Rutherford
 Optical Spectroscopy Decay of Silver
 d) Why were your favorite labs your favorites?
 e) Why did you not like the labs you crossed out?
 f) This is the first time that each student in the group was assigned a role that rotated.
 i) How did you benefit from this structure?
 ii) Do you have suggestions on how I could tweak roles in the future to make them more effective?
 g) This is the first time that I have used electronic notebooks in an effort to allow individuals in the group to
 work on multiple tasks at the same time. The idea being that since each student did not need to maintain a
 lab notebook while trying to complete the lab, labs were able to finish roughly on time.
 i) Did this actually work in practice? What benefits/challenges do you see in electronic notebooks?
 ii) Do you have suggestions on how I could improve the use of electronic notebooks in the future?

10) How engaged were you in the course? (i.e., did you regularly do the reading? Actively participate in class?
 Come to office hours? etc.)

11) What advice do you have for future students taking this course?

12) Please add any other comments here. You can continue onto the back or next page.