Restricted Symmetric Signed Permutations
Enumerations of Pattern-Avoiding Signed Permutations Invariant Under Certain Symmetry Subgroups

Andy Hardt and Justin M. Troyka

Carleton College

September 28, 2011
Signed Permutations

Definition

A *permutation* of length n is an ordering of the numbers from 1 to n. For example, the permutations of length 3 are 123, 132, 213, 231, 312, and 321.

Definition

A *signed permutation* is a permutation where we can put bars over some of the entries. For example, the signed permutations of length 2 are 12, 1\(\bar{2}\), \(\bar{1}2\), \(\bar{1}\bar{2}\), 21, 2\(\bar{1}\), \(\bar{2}1\), and \(\bar{2}\bar{1}\).
Definition

A signed permutation π contains another signed permutation (called a pattern) ρ if there is a substring of π with the same relative ordering and bar configuration as ρ. If π does not contain ρ, we say π avoids ρ.

The pattern $\overline{2}1$

62748153 contains the pattern $2\overline{1}$
Symmetric Invariance

16254738 is invariant under R_{180}.

75136842 is invariant under R_{180}.

64827153 is invariant under D.

35827146 is invariant under R_{90}.

13247856 is invariant under D.

64827153 is invariant under D and D^T.
Simplifications

- Some symmetry operations, such as reflection over a vertical line, fix no permutations.

- If the permutation π avoids the pattern ρ and is invariant under the symmetry g, then π also avoids $g(\rho)$.

- If H is a symmetry subgroup, R is a set of patterns, and g is a symmetry in the normalizer of H, then for all $n \geq 0$, $|B_n^H(R)| = |B_n^H(g(R))|$.
Permutations Invariant Under R_{180}

Result

\[
|B_{2k}^{180}(21, 12)| = 2^{2k} \binom{2k}{k} \\
|B_{2k+1}^{180}(21, 12)| = 2^{2k+1} \binom{2k+1}{k+1}
\]

Terms

1, 2, 2, 4, 6, 12, 20, 40, 70, 140
Permutations Invariant Under R_{180}

Result

\[
|B_{2k}^{180}(\bar{21}, 12)| = \binom{2k}{k}.
\]

\[
|B_{2k+1}^{180}(\bar{21}, 12)| = 2\binom{2k}{k}.
\]

Terms

1, 2, 2, 4, 6, 12, 20, 40, 70, 140
Permutations Invariant Under R_{180}

Result

$$|B_{2k}^{180}(\bar{21}, \bar{21}, 21)| =$$

Even terms

1, 3, 10, 35, 126, 462, 1716, 6435
Permutations Invariant Under R_{180}

Result

$$|B_{2k}^{180}((21, 21, 21))| = \binom{2k+1}{k}.$$

Even terms

1, 3, 10, 35, 126, 462, 1716, 6435
Permutations Invariant Under D and D'

Result

$$|B_{2k}^H(\bar{21}, \bar{21}, 2\bar{1}, 21)| =$$

Even terms

1, 2, 4, 8, 16, 32, 64, 128
Permutations Invariant Under D and D'

Result

$$|B_{2k}^H(\overline{21}, \overline{21}, 2\overline{1}, 21)| = 2^k.$$

Even terms

1, 2, 4, 8, 16, 32, 64, 128
Permutations Invariant Under D and D'

Result
\[|B_{2k}^H(\bar{2}\bar{1}, \bar{2}1, 2\bar{1}, 21)| = 2^k. \]

Even terms
1, 2, 4, 8, 16, 32, 64, 128

Result
\[|B_{2k}^H(\bar{2}\bar{1})| = \]

Even terms
1, 3, 11, 45, 201, 963, 4899, 26253
Permutations Invariant Under D and D'

Result

\[|B_{2k}^H(\bar{2}\bar{1}, \bar{2}1, 2\bar{1}, 21)| = 2^k. \]

Even terms

1, 2, 4, 8, 16, 32, 64, 128

Result

\[|B_{2k}^H(\bar{2}\bar{1})| = 3|B_{2(k-1)}^H(\bar{2}\bar{1})| + 2(k - 1)|B_{2(k-2)}^H(\bar{2}\bar{1})|. \]

Even terms

1, 3, 11, 45, 201, 963, 4899, 26253
Permutations Invariant Under D and $\overline{D'}$

Result

$$|B_{2k}^W(\overline{12}, 12)| =$$

Even terms

$1, 2, 4, 8, 16, 32, 64, 128$
Permutations Invariant Under D and D'

Result

$$|B_{2k}^W(\bar{12}, 12)| = 2^k.$$

Even terms

1, 2, 4, 8, 16, 32, 64, 128
Permutations Invariant Under D and $\overline{D'}$

Result
\[|B_{2^k}^W (\overline{12}, 12)| = 2^k. \]

Even terms
1, 2, 4, 8, 16, 32, 64, 128

Result
\[|B_{2^k}^W (\overline{12}, \overline{12}, 12)| = \]

Even terms
1, 1, 2, 3, 6, 10, 20, 35
Permutations Invariant Under D and $\overline{D'}$

Result

$|B_{2k}^W(\overline{12}, 12)| = 2^k$.

Even terms

1, 2, 4, 8, 16, 32, 64, 128

Result

$|B_{2k}^W(\overline{12}, \overline{12}, 12)| = \binom{k}{\lfloor k/2 \rfloor}$.

Even terms

1, 1, 2, 3, 6, 10, 20, 35
Permutations Invariant Under \overline{D}

Result

$|B_{2k}^D(\overline{21}, \overline{21}, 21)| = C_k$

Even terms

1, 1, 2, 5, 14, 42, 132, 429
Result

$$|B_{2k}^{D}(\vec{1}, \vec{21}, 21)| = C_k.$$
Open Questions

- Combinatorial proofs:
 - \(|B_{2k}^{1\bar{0}}(\bar{21}, 21, 21)| = \binom{2k+1}{k} \)
 - \(|B_{2k}^{\bar{W}}(\bar{12}, 12, 12)| = \binom{k}{\lfloor k/2 \rfloor} \)

- \(r \)-colored permutations for \(r > 2 \).

- Avoidances of length 2 and length 3
Acknowledgements

- Carleton’s HHMI Grant
- Carleton College Department of Mathematics
- Our Adviser Eric Egge