
Tutorial on plotting in R 1

Plots in R

There are three basic plotting functions in R: high-level plots, low-level plots, and the layout command
par. Basically, a high-level plot function creates a complete plot and a low-level plot function adds to an
existing plot, that is, one created by a high-level plot command.

High-Level Plot Functions

Some of the basic plot functions include:

Function Description

plot scatter/line plot

hist histogram

barplot barplot

boxplot boxplot

qqnorm normal-quantile

Download the example data set States03 from http://apps.carleton.edu/curricular/math/resources/

rcomputing/, then import it into your session.

If you are using RStudio, then at the menu, Tools > Import Dataset > From Text File... and
navigate to the location of the file.

Or at the command line, use read.csv to import the data:

> States03 <- read.csv("States03.csv")

(exact path will vary depending on where you saved the file).

Basic single variable plots:

> barplot(table(States03$Region))

> hist(States03$Poverty)

To create a scatter plot, there are two approaches:

> plot(States03$Unemp, States03$Poverty, xlab = "Unemployment", ylab = "Poverty")

> plot(Poverty ~ Unemp, data = States03, xlab = "Unemployment", ylab = "Poverty")

In the first approach, provide the plot command with the x-variable, then the y-variable. In the second
approach, if the data are contained in a data frame, then provide the names of the variable Y ∼ X along
with the name of the data frame.

High-level functions may also take optional arguments that enhance the plot.

> hist(States03$Poverty, main = "Poverty", xlab = "percent",

xlim = c(0, 24), ylim = c(0, 20))

> plot(1:19, 1:19, pch = 1:19, xlab = "x", ylab = "y")

> pie(rep(1, 8), col = 1:8)

http://apps.carleton.edu/curricular/math/resources/rcomputing/
http://apps.carleton.edu/curricular/math/resources/rcomputing/

Tutorial on plotting in R 2

Option Description

pch point character (pch=1, 2, ...)

lty line type (lty=1, 2, ...)

lwd line thickness (lwd= 1, 2,...)

col color (col=“red”, “blue”,...)

xlim x-axis limits: xlim=c(min,max)

ylim y-axis limits

xlab x-axis label: xlab=“my label”

ylab y-axis label

main main title

sub sub title

To plot smooth curves, use the curve command. The first argument must be an expression in terms of x:

> curve(x^2, from = 0, to = 2)

> curve(cos(x), from = 0, to = pi)

> curve(cos(x), from = 0, to = pi, lty = 4, col = "red")

Low-level Plot Functions

Low-level plot functions can be executed only after a high-level plot has been created. For example,

> plot(Poverty ~ Unemp, data = States03, xlab = "Unemployment", ylab = "Poverty")

> abline(v = mean(States03$Unemp), lty = 2) #vertical line at mean unemployment rate,

> text(30, 18, "mean unemployment rate") #text at (30, 18)

> title("Data from 2003")

The abline function has several options:

abline(3, 5) adds the straight line y = 3 + 5x

abline(v = 2) adds the vertical line, x = 2

abline(h = 0) adds the horizontal line, y = 0

> plot(Poverty ~ ColGrad, data = States03, col = "blue", pch = 19, xlab = "College grad (%)",

ylab = "Poverty (%)")

> points(Uninsured ~ ColGrad, data = States03, col = "red", pch = 19)

> mtext("Percent uninsured", side = 4)

> legend("bottomleft", legend = c("Y: Poverty","Y: Uninsured"), col = c("blue","red"),

pch = c(16, 16))

You can also use different plotting symbols for different levels of a factor variable:

Tutorial on plotting in R 3

> range(States03$Poverty)

> range(States03$ColGrad)

> plot(Poverty ~ ColGrad, data = States03, pch=16, subse t =Region=="West",

xlim = c(15,40), ylim = c(5, 20))

> points(Poverty ~ ColGrad, data = States03, pch=16, col = "red", subset = Region=="South")

> points(Poverty ~ ColGrad, data = States03, pch=16, col = "green", subset = Region=="Northeast")

> points(Poverty ~ ColGrad, data = States03,pch = 16, col = "blue", subset = Region=="Midwest")

> legend("topright", legend=c("West", "South", "Northeast", "Midwest"),

pch = rep(16,4), col = c("black", "red", "green", "blue"))

> curve(cos(x), from = 0, to = 2*pi)

> curve(sin(x), add = TRUE, col = "blue", lty = 2)

Function Description

lines add a line plot

points add points

text add text

mtext margin text

abline add a straight line

qqline add line to qqnorm

title add a title

The par Command

The par command controls the layout of the graphics device. The option you will use most often will
probably be mfrow (multi-figure, by row), or mfcol. For example, to have a 3x2 layout where the plots
are added by row, set

This setting will exist throughout the life of the graphics device unless you change it back to the default
mfrow=c(1,1).

You can also change the default color, plot character, etc. for the graphs created on the graphics device.

> par(mfrow = c(2, 2)) #2x2 layout

> curve(3*x^2)

> curve(cos(x))

> hist(States03$Population)

> qqnorm(States03$Population)

> qqline(States03$Population)

> par(mfrow = c(1, 1)) #reset to default layout

Tutorial on plotting in R 4

Misc.

• Type colors() at the command line to see the list of colors available to the plotting commands.

• You can export to some common file formats (jpg, pdf, ps). With the graph in focus, go to the
menu, in Windows, File > Save As... and save to jpg, pdf, ps, png or bmp. On the Macintosh,
File > Save as to pdf only.

Or, at the command line, for instance

> postscript(file = "MyPlot.eps") #open graphics device

> hist(States03$Births, main = "Number of births") #create graph

> dev.off() #close graphics device

The file MyPlot.eps will be located in your working directory.

See the help file for postscript, jpeg, png, tiff or pdf.

Modified: Sept 2014, L. Chihara

