Non-Mass Action Modeling for the Binding of Phosphorylated Gli1 with Sufu

Kento Kameyama1, Taisa Kushner2, Dr. German Enciso3

1University of California – Irvine 2St. Olaf College, Northfield, MN 3University of California – Irvine, Department of Mathematics
What is this?
Hedgehog Pathway!
Hedgehog & MAPK Cross-Talk

Signal cascade

Cross-talk

EGF Erk

Shh Gli1
The Biological Question

Cancers (Glioblastoma Multiforme)
Where is the math?

- Propose biological question
- Design an experiment
- Perform experiment / Gather data
- Adjust Theory
- Analyze data
Where is the math?

Propose biological question

Design an experiment

Perform experiment / Gather data

Adjust Theory

Data Analysis
Our Research

In order to understand the Erk2-Gli1-Sufu system we propose a novel method of biochemical modeling using Holling Type-II non-linear interactions from ecology.
Experimental Design – Bardwell Lab

• Want Gli1_{68-232} (has Sufu binding site)
 o CDNA Cloning
 o Radioactive tagging Sufu
• Titrations of Gli1 and Erk1
• Analyze with protein binding assays
 o Gel electrophoresis
Data Collection

Gli\textsubscript{168-232} kinase with Erk2

Gli\textsubscript{168-232} binding to Sufu
Data Translation

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Treatment</th>
<th>Time</th>
<th>nM GLI1_{68-232}</th>
<th>raw</th>
<th>bkgd adj</th>
<th>% pptd</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLI1_{68-232}</td>
<td>Mock</td>
<td>120 min</td>
<td>10</td>
<td>1950344</td>
<td>1707458</td>
<td>43.12</td>
</tr>
<tr>
<td>GLI1_{68-232}</td>
<td>ERK2 10 u</td>
<td>120 min</td>
<td>20</td>
<td>1743213</td>
<td>1500327</td>
<td>37.89</td>
</tr>
<tr>
<td>GLI1_{68-232}</td>
<td>ERK2 20 u</td>
<td>120 min</td>
<td>80</td>
<td>1928816</td>
<td>1685930</td>
<td>42.58</td>
</tr>
<tr>
<td>GLI1_{68-232}</td>
<td>ERK2 50 u</td>
<td>120 min</td>
<td>2.5</td>
<td>487568</td>
<td>244682</td>
<td>6.18</td>
</tr>
<tr>
<td>GLI1_{68-232}</td>
<td>ERK2 100 u</td>
<td>120 min</td>
<td>0</td>
<td>246405</td>
<td>3519</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3959758</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing increased [Gli1] leads to increased Sufu binding](image)
Initial Model: Mass-Action

\[S + G \xrightarrow{k_{on}} C \xleftarrow{k_{off}} \]

\(S = [\text{Sufu}] \quad G = [\text{Gli1}] \quad C = [\text{Bound Complex}] \)

\(k_{on}, k_{off} = \text{rate constants} \)

\[G' = -k_{on}SG + k_{off}C' \]

\[S' = -k_{on}SG + k_{off}C' \]

\[C' = k_{on}SG - k_{off}C' \]
Steady State Analysis: Mass Action

\[G' = -k_{on}SG + k_{off}C = 0 \]

\[-k_{on}(S_t - C)G + k_{off}C = 0 \]

\[-(S_t - C)G + k_d C = 0 \]

\[k_d C = (S_t - C)G \]

\[k_d C + GC = S_t G \]

\[C(k_d + G) = S_t G \]

\[C = \frac{S_t G}{(k_d + G)} \]

\[\%SuFuBound = \frac{C}{S_t} = \frac{G}{(k_d + G')} \]
Curve fitting: Mass-Action

\[
\frac{G}{(k_d + G)}
\]

This requires forced saturation level, “S_{max}”, to be identified. We tested
- Equal saturation
- Variable saturation

Equal saturation: R>0.64
Variable saturation: R>0.93
Mass-Action Dynamics

• Assumes all curves saturate to the same level, 100% of S_{max}
• Occurs regardless of k_{on}, k_{off} parameters
Identifying Saturation Levels

Original data: Might all saturate at equal levels

Directed Experiment: find saturation levels decrease when Gli1 phosphorylated by Erk. Consistent through time
Explaining Saturation Levels

- Simple mass-action is not reasonable
- Try dimerization model:
 - Same basis as simple mass-action, however Gli1 is able to form a dimer, D
 - Hope Gli1 dimerization lowers binding with Sufu

\[
S + G \xrightleftharpoons[k_2]{k_1} C \\
2G \xrightleftharpoons[k_4]{k_3} D
\]

\[
S' = -k_1 SG + k_2 S \\
G' = -k_1 SG - k_3 G^2 + 2k_4 D + k_2 C \\
C' = -k_2 C + k_1 SG \\
D' = -k_4 D + k_3 G^2
\]
Steady-State Analysis: Dimerization

- Curve shape changes, but saturation remains at 100%
- Not a sufficient explanation of varying saturation levels
Proposed Solution: Non-Linear Dynamical Model

\[S + G \xrightarrow[\frac{k_{on}}{k_{off}}]{k_{on}} C \]

\[G' = S' = -k_{on} \frac{G}{1 + \tau k_{on} G} S + k_{off} C \]

\[C' = -k_{off} C + k_{on} \frac{G}{1 + \tau k_{on} G} S \]

- General form remains the same
- Gli1 and Sufu binding rate taken to be non-linear
- Binding rate changes based on \(\tau \), time delay between Gli1-Sufu initial interaction and successful binding
Steady-State Analysis:
Non-Mass Action

\[S' = -k_{on} \frac{G}{1 + \tau k_{on} G} S + k_{off} C \]

\[C = S_t \frac{G_{k_{on}} + k_{off} + k_{on} S_t + G_{k_{on}} k_{off} \tau \pm \sqrt{4G_{k_{on}} S_t(-k_{on} - k_{on} k_{off} \tau) + (G_{k_{on}} + k_{off} + k_{on} S_t + G_{k_{on}} k_{off} \tau)^2}}}{2(k_{on} + k_{on} k_{off} \tau)} \]

\[\%SuFuBound = \frac{G_{k_{on}} + k_{off} + k_{on} S_t + G_{k_{on}} k_{off} \tau + \sqrt{4G_{k_{on}} S_t(-k_{on} - k_{on} k_{off} \tau) + (G_{k_{on}} + k_{off} + k_{on} S_t + G_{k_{on}} k_{off} \tau)^2}}}{2(k_{on} + k_{on} k_{off} \tau)} \]
Steady-State Analysis:
Non-Mass Action

\[S' = -k_{on} \frac{G}{1 + \tau k_{on} G} S + k_{off} C \]

\[C = S_t \frac{G_t k_{on} + k_{off} + k_{on} S_t + G_t k_{on} k_{off} \tau}{2} \pm \sqrt{4 G_t k_{on} S_t (-k_{on} - k_{on} k_{off} \tau) + (G_t k_{on} + k_{off} + k_{on} S_t + G_t k_{on} k_{off} \tau)^2} \]

\[\% Sufu Bound = \frac{G_t k_{on} + k_{off} + k_{on} S_t - G_t k_{on} k_{off} \tau}{2} \pm \sqrt{4 G_t k_{on} S_t (-k_{on} - k_{on} k_{off} \tau) + (G_t k_{on} + k_{off} + k_{on} S_t + G_t k_{on} k_{off} \tau)^2} \]

Notice total Sufu becomes important, along with individual \(k_{on}, k_{off} \)
Steady-State Dynamics

- Non-linear system allows for variable saturation levels. Increasing τ lowers total saturation level bound S_{ufu}. Similar dynamics occur for k_{off}. Increasing k_{on} results in saturation at lower levels total Gli1.
- Saturation occurs at $\frac{S_{total}}{1+k_{off} \tau}$.
Curve fitting: Non-Mass Action

\[
\frac{G_{tkon} + k_{off} + k_{on}S_t + G_{tkon}k_{off}\tau + \sqrt{4G_{tkon}S_t(-k_{on} - k_{on}k_{off}\tau) + (G_{tkon} + k_{off} + k_{on}S_t + G_{tkon}k_{off}\tau)^2}}}{2(k_{on} + k_{on}k_{off}\tau)}
\]
Validity of Non-Linear Model

- Holling Type-II functional response
- Mass-Action is Holling Type-I
Validity of Non-Linear Model

• Binding time = handling time
• Sufu can only bind and unbind at a certain maximal rate – binding is not instantaneous
• Introduce time-delay to model this

\(\Delta t \): some time interval
\(y \): # binding per sufu molecule in time interval \(\Delta t \)
\(r = \frac{y}{\Delta t} S \)

Non Mass-Action

\(\tau \): binding time per sufu molecule
\(y = k_{on} G (\Delta t - y \tau) \)

\(y = \frac{k_{on} G}{1 + k_{on} G \tau} \Delta t \)

\(r = \frac{1}{\tau _au} \frac{G}{k_{on} + G} S \)

\(= \frac{1}{\tau _au} \frac{G}{k_{on} + G} S \)

\(= -k_{on} \frac{G}{1 + k_{on} \tau G} S \)
Binding Rate Comparison

\[S + G \xrightarrow{k_{on} \quad k_{off}} C \]

Mass-action binding rate:

\[r = k_{on}SG \quad \rightarrow \quad G' = -k_{on}SG + k_{off}C \]

Proposed non-linear binding rate:

\[r = k_{on} \frac{G}{1 + k_{on}\tau G}S \quad \rightarrow \quad G' = -k_{on} \frac{G}{1 + k_{on}\tau G}S + k_{off}C \]
Conclusions

- Phosphorylation of Gli1 by Erk2 lowers total Sufu-Gli1 binding
- Biochemical interactions of phosphorylated Gli1-Sufu are more complex than is accounted for by mass action
- Modeling of Sufu-Gli1 binding based on Holling Type-II rate dynamics allows for variable saturation levels at steady-state, consistent with biological data
- Total Gli1-Sufu bound saturation is $\frac{S_{total}}{1+k_{off} \tau}$
- The interaction of Gli1-Sufu is not instantaneous and phosphorylation of Gli1 by Erk2 increases time delay, τ
- Cross-disciplinary studies can bring new insight, even when within a field
Future Direction

• Gli1 is a multisite protein – we believe this is likely important for Erk2/Sufu binding
 ➢ Possible phosphorylation of given sites affects subsequent binding to Sufu

• Multisite dynamics experiments are currently in process [Bardwell Lab]
 ➢ We would like to extend our analysis to a multisite phosphorylation model of Gli1 with Erk2 and Sufu to incorporate this data.
 ➢ In particular, we hope to be able to fit this data to a concerted, redundant activation (CRA) model recently developed by G. Enciso. [submitted June 11, 2013]
Acknowledgments

• Dr. German Enciso, UC Irvine
• Dr. Lee and Dr. Jane Bardwell – Bardwell Lab, UC Irvine
• University of California – Irvine
• The Mathematical Biosciences Institute

This project was funded by two grants:
 • NSF Grant #NSF-DMS 0931642
 • NIH/NIGMS Systems Biology Center Grant #P50-GM076516
We would like to acknowledge Dr. Lee and Jane Bardwell of Bardwell Lab, UC Irvine for providing biological data and allowing our use of their laboratory.

G. Enciso, D.R. Kellogg, A. Vargas, Modeling of a yeast bud checkpoint using a novel multisite mechanism, Submitted 11 June 2013 to PLOS Computational Biology
