A Characterization of the Prime Graphs of Solvable Groups

Alex Gruber, Daniel Lenders, Keeley Naughton, Ben Strasser

Advisor: Dr. Thomas Keller

September 25, 2012
Definition

Given a finite group G, the *prime graph of G, Γ_G, is defined as*

- $V(\Gamma_G) = \{ p \in \mathbb{P} : p \in \pi(G) \}$
- $E(\Gamma_G) = \{ \{ p, q \} : \exists x \in G \text{ with } O(x) = pq \}$.

*Note: the notation $\pi(G)$ refers to the prime divisors of $|G|$.***
Given a finite group G, the prime graph of G, Γ_G, is defined as

- $V(\Gamma_G) = \{p \in \mathbb{P} : p \in \pi(G)\}$
- $E(\Gamma_G) = \{\{p, q\} : \exists x \in G \text{ with } O(x) = pq\}$.

Note: the notation $\pi(G)$ refers to the prime divisors of $|G|$.

- Research in prime graphs was first motivated by a connection to representation theory discovered by Gruenberg.
Definition

Given a finite group G, the prime graph of G, Γ_G, is defined as

- $V(\Gamma_G) = \{p \in \mathbb{P} : p \in \pi(G)\}$
- $E(\Gamma_G) = \{\{p, q\} : \exists x \in G \text{ with } O(x) = pq\}$.

Note: the notation $\pi(G)$ refers to the prime divisors of $|G|$.

- Research in prime graphs was first motivated by a connection to representation theory discovered by Gruenberg.
- The prime graphs of simple groups are well understood, as well as some graph invariants such as diameter.
Consider $G = S_8$.

- $\pi(S_8) = V(\Gamma_{S_8}) = \{2, 3, 5, 7\}$
- In S_n, there is an element of order pq if and only if $p + q \leq n$, since any such element could be decomposed into disjoint p and q cycles.

Therefore, $E(\Gamma_{S_8}) = \\{\{2, 3\}, \{2, 5\}, \{3, 5\}\}$
Consider $G = S_8$.

- $\pi(S_8) = V(\Gamma_{S_8}) = \{2, 3, 5, 7\}$
- In S_n, there is an element of order pq if and only if $p + q \leq n$, since any such element could be decomposed into disjoint p and q cycles. Therefore, $E(\Gamma_{S_8}) = \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}$
Definition: Hall subgroups

Given a set π of primes dividing the order of G, a π–Hall subgroup H is a subgroup such that $|H|$ and $[G : H]$ are coprime and $p | |H|$ for each $p \in \pi$.
Hall Subgroups and Solvable Groups

Definition: Hall subgroups
Given a set π of primes dividing the order of G, a π–Hall subgroup H is a subgroup such that $|H|$ and $[G : H]$ are coprime and $p | |H|$ for each $p \in \pi$.

Definition: Solvable Group
A group G is solvable if it has π–Hall subgroups for all subsets of $\pi(G)$, the prime divisors of $|G|$.
Theorem (P. Hall)

If G is a finite solvable group, then every $\pi-$subgroup of G is contained in a Hall π-subgroup of G. Moreover, all Hall $\pi-$subgroups of G are conjugate.

In terms of prime graphs, if G is solvable, then every induced subgraph of Γ_G is the prime graph of a subgroup of G.
Theorem

A graph Γ is (isomorphic to) the prime graph of some solvable group if and only if \overline{G} is three-colorable and triangle-free.
Three Primes Lemma (Lucido)

Let G be a finite solvable group. If p, q, r are distinct primes dividing the order of G, then G contains an element of order the product of two of these primes.
Proof Part I: Triangle-Free Complements

Three Primes Lemma (Lucido)

Let G be a finite solvable group. If p, q, r are distinct primes dividing the order of G, then G contains an element of order the product of two of these primes.

- If G is solvable, then for any $p, q, r \in \Gamma_G$, at least one of the edges $pq, qr, rp \in \Gamma_G$.

Alex Gruber, Daniel Lenders, Keeley Naughton, Ben Strasser Advisor: Dr. Thomas Keller

A Characterization of the Prime Graphs of Solvable Groups

September 25, 2012
Proof Part I: Triangle-Free Complements

Three Primes Lemma (Lucido)

Let G be a finite solvable group. If p, q, r are distinct primes dividing the order of G, then G contains an element of order the product of two of these primes.

- If G is solvable, then for any $p, q, r \in \Gamma_G$, at least one of the edges $pq, qr, rp \in \Gamma_G$.
- Put another way, the complement $\overline{\Gamma_G}$ of the prime graph of a solvable group must be triangle free.
Frobenius Groups

Definition: Frobenius Group
A group $G = K \rtimes H$ is a Frobenius group if H is a non identity subgroup such that $H \cap H^g = 1$ for all $g \in G - H$. In this case, we say H is the Frobenius complement and K is the Frobenius kernel of G.

Note: H necessarily acts fixed-point freely on K by automorphism.

Example: $D_3 \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2$.
Frobenius Groups

Definition: Frobenius Group
A group $G = K \rtimes H$ is a Frobenius group if H is a non identity subgroup such that $H \cap H^g = 1$ for all $g \in G - H$. In this case, we say H is the Frobenius complement and K is the Frobenius kernel of G. Note: H necessarily acts fixed-point freely on K by automorphism.

Example: $D_3 \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2$.

Definition: 2-Frobenius Group
A group $G = KHF$ is a 2–Frobenius group if KH is a Frobenius group with complement H and $G/K = (HF)/K$ is a Frobenius group with complement F/K.

Example: $S_4 = VHF$ where $V \cong \mathbb{Z}_4 \times \mathbb{Z}_3$, and $S_4/V = HF \cong S_3$.
Frobenius groups have extremely restricted structures; Frobenius kernels are all nilpotent and the Sylow subgroups of Frobenius complements are cyclic or generalized quaternion.
Frobenius groups have extremely restricted structures; Frobenius kernels are all nilpotent and the Sylow subgroups of Frobenius complements are cyclic or generalized quaternion.

Lemma (Lucido)

If the prime graph of a solvable group G is disconnected, then G is a Frobenius or a 2–Frobenius group.

Alex Gruber, Daniel Lenders, Keeley Naughton, Ben Strasser
Advisor: Dr. Thomas Keller

A Characterization of the Prime Graphs of Solvable Groups
September 25, 2012 9 / 16
Frobenius groups have extremely restricted structures; Frobenius kernels are all nilpotent and the Sylow subgroups of Frobenius complements are cyclic or generalized quaternion.

Lemma (Lucido)

If the prime graph of a solvable group G is disconnected, then G is a Frobenius or a 2−Frobenius group.

Lemma: There are no 3-Frobenius groups.

If G is a group with subgroups N and $L = KHF$ where $L \leq N_G(N)$ and L is a 2-Frobenius group where KH is a Frobenius group with kernel K and L/K is a Frobenius group with kernel H, then K cannot act fixed-point freely on N.
Question
If G is solvable, when does Γ_G not have an edge? What does this say about the group structure of G?

Answer:
Question

If G is solvable, when does Γ_G not have an edge? What does this say about the group structure of G?

Answer:

- If $pq \notin \Gamma_G$, let H_{pq} be a $\{p, q\}$–Hall subgroup. Then $\Gamma_{H_{pq}}$ is comprised of two disconnected points.
Question

If G is solvable, when does Γ_G not have an edge? What does this say about the group structure of G?

Answer:

- If $pq \notin \Gamma_G$, let H_{pq} be a $\{p, q\}$–Hall subgroup. Then $\Gamma_{H_{pq}}$ is comprised of two disconnected points.
- By Lucido, H_{pq} is a Frobenius or 2–Frobenius group.
Definition: Frobenius Digraph

For a solvable group G, the Frobenius digraph, Γ_G, is constructed from Γ_G like so. For two primes p and q adjacent in Γ_G and for H_{pq}, a Hall $\{p, q\}$—subgroup of G,

- if $H_{pq} = KL$ is a Frobenius group with Frobenius kernel K, the $\{p, q\}$ edge is directed towards the prime divisor of K, and
- if $H_{pq} = KLF$ is a 2-Frobenius group where H_{pq}/K has Frobenius kernel L, then the $\{p, q\}$ edge is directed towards the prime divisor of L.
Proof Part II: Three-Colorability of Γ_G

For Γ_G, the Frobenius Digraph of some solvable group G, we identify the following sets of vertices.
Proof Part II: Three-Colorability of Γ_G

For Γ_G, the Frobenius Digraph of some solvable group G, we identify the following sets of vertices.

- Let I be the set of vertices with all edges directed into the vertex.

Let I be the set of vertices with all edges directed into the vertex.

\[\text{Diagram:} \]

\[\text{Diagram:} \]
Proof Part II: Three-Colorability of $\overrightarrow{\Gamma_G}$

For $\overrightarrow{\Gamma_G}$, the Frobenius Digraph of some solvable group G, we identify the following sets of vertices.

- Let I be the set of vertices with all edges directed into the vertex.

- Let O be the set of vertices with all edges directed away from the vertex.
Proof Part II: Three-Colorability of Γ_G

For Γ_G, the Frobenius Digraph of some solvable group G, we identify the following sets of vertices.

- Let I be the set of vertices with all edges directed into the vertex.

- Let O be the set of vertices with all edges directed away from the vertex.

- Let D as the set of all vertices with at least one arrow directed towards the vertex and one arrow directed away from the vertex.
No two vertices in the same set can have an edge between them.
No two vertices in the same set can have an edge between them.

- If two vertices in the set O or I share an edge then there is a double path:

```
    (O) ---- (O)
     |    |    |
     |    |    |
    (O) ---- (O)
```

```
    (I) ---- (I)
     |    |    |
     |    |    |
    (I) ---- (I)
```
No two vertices in the same set can have an edge between them.

- If two vertices in the set D share an edge, then there necessarily exists a three path:
No two vertices in the same set can have an edge between them.

- If two vertices in the set D share an edge, then there necessarily exists a three path:

```
  o--o--o
   |   |   |
   o   o   o
```

- This is impossible since we cannot have a 3–Frobenius Group.
No two vertices in the same set can have an edge between them.

- If two vertices in the set D share an edge, then there necessarily exists a three path:

- This is impossible since we cannot have a $3-$Frobenius Group.
- O, I, and D are independent sets in $\overline{\Gamma_G}$, so $\overline{\Gamma_G}$ is 3-colorable. \square
Proof Part III: Converse

Theorem

For any 3-colorable, triangle free graph F, there exists a finite solvable group G such that F is isomorphic to the complement of Γ_G. Furthermore, any orientation of F which does not contain a directed 3-path can be realized as a Frobenius digraph of some solvable group.
Using our characterization and several other sources, we were able to show
Using our characterization and several other sources, we were able to show

- Every finite group is isomorphic to the automorphism group of the prime graph of some solvable group.
Using our characterization and several other sources, we were able to show

- Every finite group is isomorphic to the automorphism group of the prime graph of some solvable group.
- In the extremal case (i.e. prime graphs with the fewest possible edges), the corresponding groups must have Fitting length between 3 and 5.