Special Project Ideas

Fall term is a good time to engage in research projects, and it’s not too early to start them sophomore year. We highly recommend that you do one, as do most students who have tried them. If you take one, you will learn something about actually doing Physics and Astronomy research, which will help guide you in decisions about “life after Carleton.” To lure you, we list numerous suitable projects below. The descriptions here are very brief; talk to us to us to explore more fully those projects that interest you and to be sure that we have not already promised a particular project to someone else.

Please note that these are offered only on S/Cr/NC basis since it is very difficult to assign grades to independent and cooperative projects. Special projects are for 2 to 3 credits and you will need to complete a special project form that will get deposited with the registrar. Independent studies can be 1 to 6 credits, and again you need to complete a special form. You can pick up a copy from Trenne Fields, Olin 331 or get one online under the Physics and Astronomy Department web page >> Student Resources >>Forms.

Andres Aragoneses

My research interests are in complex systems and complex dynamics, focused in nonlinear laser dynamics. Examples of complex systems include the human brain, cellular networks, the climate, social networks, laser dynamics, among many others. I am particularly interested in the dynamics of semiconductor lasers, as they are simple devices with which we can obtain a broad range of dynamics, from chaos to regular patterns. Also, these devices can help us design optical neurons, i. e., photonic systems that mimic biological neurons’ behavior. This last would help us understand how neurons compute information, and would path the way for a neuro-inspired optical computational system.

There are different possibilities of research, some of them imply simulating models, others aim to apply novel and powerful statistical analysis tools to experimental and numerical data previously studied. In your research you will begin deepening your knowledge on lasers and complex systems. Then you will focus, either on a more numerical simulations path, or on statistical data analysis from different complex systems.

Requirements: eager to learn and discover. Previous software programing knowledge is welcome but not required.

Marty Baylor

I have several ongoing research projects for students interested in optics. Please contact me if you are interested in any of these projects. No prior coursework or research experience is required, only an eagerness to learn and delve into hands-on experimental work. I am currently looking for students to start in fall or winter term.

Holographic photopolymers and optofluidic devices: This project has several sub-projects occurring in parallel. Many of the current projects involve measuring and controlling the properties of my holographic photopolymer. Additional projects involve building refractometers and exploring other devices that involve optics and fluids that we might be able to miniaturize using my polymer. The possibility for short-term and long-term projects exists.

Lab development: I am interested in developing optics labs for use in upper-division optics courses. This project is ideal for a student who wants a short-term, hands-on project in optics (1-2 terms), but is not ready to commit to working into the summer.

Cindy Blaha

I have several projects to share with students who are interested in astronomical research and observation. Please come and talk to me if you are interested in working on these projects.

Evolutionary History of Galaxies: Interested in finding out how stars and gas interact to affect the life of a galaxy? Massive stars and the gas they ionize play an integral role in shaping the evolutionary history of a galaxy. Recently we’ve been working identifying the ionized hydrogen regions in spiral galaxies M31 and M33, spiral neighbors of our own Milky Way. Optical observations were acquired for three large fields in M33 and ten fields in M31. Each field has a set of B, V and R (blue, green and red) broadband images as well as three images taken through narrow interference filters centered on specific emission lines of ionized hydrogen, sulfur and oxygen. Using all these images together, we are trying to compare the galactic “life history” of M31 and M33. Data analysis will involve use of the Image Reduction and Analysis Facility (IRAF) and other image processing software on several operating systems.

Carleton's CCD Project: I am also involved with developing educational materials for our set of eight CCD (Charge Coupled Device) cameras as well as the new spectrometer and video cameras. This equipment is used on our 8" and 16" telescopes and allows us to record digital observations of astronomical objects and analyze them with a wide variety of software packages for image processing. We will continue to experiment with our CCD cameras, spectrometer and computers to develop observational labs and independent research projects ranging from lunar imaging and compositional analysis to determining the age of stellar clusters.

Melissa Eblen-Zayas

The special projects I have fall into two categories: condensed matter physics (or materials science) projects and applied physics projects in sustainability. Anyone, including first-year students, is welcome to talk with me about getting involved. No previous experience is needed; the only pre-requisites are curiosity and enthusiasm for doing hands-on work.

Exploring colossal magnetoresistive (CMR) materials: Correlated electron materials, where strong electron interactions give rise to unusual behavior, include high temperature superconductors and CMR materials. We are interested in the latter, which exhibit a huge resistance change in response to applied magnetic fields. The material we study (doped europium oxide) is not naturally occurring, so we fabricate samples in the ultra-high vacuum chamber in our lab. We are interested in exploring the relationship between how we fabricate the materials and the nature of the CMR response.

Electrode materials for high yield water electrolysis: One approach for storing energy provided by wind or solar generators is via hydrogen produced by electrolysis. I'm working with a couple of colleagues to explore the feasibility of using magnetite electrodes for hydrogen production. Magnetite is appealing because it is contained in taconite, which is mined on the Iron Range in northern Minnesota. We are focused on developing magnetite electrodes and exploring how impurities in those electrodes impact the amount of hydrogen produced.

Energy efficient communities: We will explore systems approaches to planning energy efficient buildings, renewable energy projects, and materials life cycle handling.  This special project is aimed at students with interests in engineering, environmental studies, and sustainable design.  Other opportunities for community-based renewable energy and energy efficiency projects are also available, depending on student interests and backgrounds.  

Eric Hazlett

My research focuses on trapping atoms with lasers to explore the excitement/mysteries of quantum mechanics.  The goal is to produce a Bose-Einstein condensate of Rb atom and trap it in a ring trap made from a hollow laser beam. Now this project is just starting up so there will be a lot of construction and design of lasers, electronics, and infrastructure of the lab and experiment.   There will be lots of optics and electronics work. No course requirements are needed.  There are a couple of openings for projects for  this fall term, but more will be open for winter and spring.  I am also looking for someone that could be a dedicated electronics person.  I have several electronic projects that are near completion.  These projects will be critical for the lab in the future.  If you ever wanted to learn how to solder, implement, and troubleshoot electronics let me know.   There are also a few new project that need to be started as well.  Projects include assembly of power supplies, locking electronics, digital synthesizers, and amplifiers. Computer aided design of circuits will also be investigated. No experience necessary just a will to learn.  Please email me (ehazlett@carleton.edu) if you are interested. 

Frank McNally

My research topics currently follow two avenues: 1) using cosmic-ray data from IceCube (https://icecube.wisc.edu/) to look for nearby sources and/or the structure of the local galactic magnetic field, and 2) improving air-shower reconstruction using likelihood-based methods. In the past, I have also worked with the Carleton Summer Science Institute, where I taught a class on particle astrophysics and worked with students on a cell-phone-as-cosmic-ray-detector project (http://wipac.wisc.edu/deco).

Plans for the upcoming summer are uncertain, but it's possible I'll be looking for 1-2 students interested in astrophysics and science education. Programming experience is preferred as there will be a lot of it, but not a must for students willing to learn. Interested students could start as soon as winter term, and should email me at fmcnally@carleton.edu.

Arjendu Pattanayak

There are two fronts to my research:

  1. The older track tries to understand the behavior of quantum nonlinear systems, focusing on the role of decoherence and the difference between quantum and classical systems, including things like how entanglement depends on dynamics, and how you might be able to control quantum behavior. The work is both analytical and computational, and some students going with few assumptions about their background. I prefer working with juniors (or seniors), but several sophomores and some first-year students have done really well in my groups. I do like a long-term commitment — at least two terms. Travel to conferences to report on results is very likely. More information is on my research web page.
  2. The newer track is a somewhat of a change in direction for me. I have been thinking about energy issues for a while, and I have one idea about how to open a research front on 'micro-energy harvesting' (googling that phrase would be a good start to understanding what it means). I would be happy to get started on this with any student who cares to learn about this with me.

Jay Tasson

A diverse set of opportunities exist for students to work with me on projects related to relativity testing (testing Lorentz symmetry). The big-picture goal of this line of research is to try to gain some information that would guide the merge of General Relativity and quantum mechanics into a single consistent theory, but most of the work involved is much more down-to-Earth.  The opportunities could involve a variety of activities ranging from data analysis to paper and pencil theory and span a variety of areas of physics (gravitational waves, relativistic quantum mechanics, laboratory gravity tests, ...).  There are also projects suited to a variety of backgrounds and skill levels. Even if you've just taken introductory physics, you may be qualified. For more information, see my web page http://people.carleton.edu/~jtasson/ and links there in, or talk to me!

Bill Titus

Visualization of Quantum Scattering in One Dimensional:  This theoretical/computational project involves exploring ways of visualizing the one-dimensional, quantum mechanical scattering of a wave packet from a potential.  A basic background in Mathematica and quantum mechanics is required.

Numerical Determination of the Gravitational Field of a Cylinder: The gravitational field of a finite cylinder is of interest in both geology, as a model of subsurface objects, and in physics, where hollow cylinders are used to determine precise values of G, the universal gravitational constant.  In lieu of using complicated analytical expressions that exist for the field, this project involves finding suitable field expressions by numerically integrating simple analytical expressions.  A basic background in Mathematica and some C programming is required.  Calculus III is also a requirement. This position is already filled.

Gravitational Field Determination using a Surface Integral: Gravitational fields from simple objects are used in geophysics as models of subsurface objects.  This project involves finding fields from objects like spheres and rectangular prisms by using a formulation involving an appropriate surface integral.  Calculus III and a basic background in Mathematica are required.

Joel Weisberg

Pulsar and General Relativity Research: Pulsars are rapidly spinning (up to 700 times per second!) neutron stars that are born in supernovas. My students, colleagues, and I use data from the giant radiotelecopes in Arecibo, PR, Green Bank, WV, and Parkes, Australia for a variety of pulsar and general relativity projects.

We are studying Einstein's General Theory of Relativity by carefully observing the orbit and pulseshape of a binary pulsar, observing other pulsars to try to understand the  underlying emission mechanism; and measuring the density, turbulence, and magnetization of the interstellar medium by watching its effects on pulsar signals. The projects involve the use of unix, fortran, IDL, and C programs to plan the observations and to analyze the data we collect on these objects.

We would start by studying pulsars in general and learning the various software; then slowly ramping up through the year to more and more sophisticated analyses of pulsar data. Astrophysics I or II is a suggested prerequisite but we can be flexible.  Unfortunately my research positions are currently filled by returning students.